summaryrefslogtreecommitdiff
path: root/gnu/packages/bioconductor.scm
diff options
context:
space:
mode:
authorRicardo Wurmus <[email protected]>2024-11-25 16:37:07 +0100
committerRicardo Wurmus <[email protected]>2024-12-03 16:59:39 +0100
commit9024b73395c48e80676c4b077ed24b4ede2a28e8 (patch)
tree7324ebfc837eed7b909847e7282f7df3eb3d3619 /gnu/packages/bioconductor.scm
parent9137a812b0af830a3d8e092478afb8ef81827743 (diff)
gnu: Add r-ccfindr.
* gnu/packages/bioconductor.scm (r-ccfindr): New variable. Change-Id: Icc76252494a1750888b8218df36ed002096c0268
Diffstat (limited to 'gnu/packages/bioconductor.scm')
-rw-r--r--gnu/packages/bioconductor.scm43
1 files changed, 43 insertions, 0 deletions
diff --git a/gnu/packages/bioconductor.scm b/gnu/packages/bioconductor.scm
index 6811aed04e..2aa219ca92 100644
--- a/gnu/packages/bioconductor.scm
+++ b/gnu/packages/bioconductor.scm
@@ -5327,6 +5327,49 @@ scRNA-seq data. A flexible beta-binomial error model that accounts for
stochastic dropout events as well as systematic allelic imbalance is used.")
(license license:gpl3)))
+(define-public r-ccfindr
+ (package
+ (name "r-ccfindr")
+ (version "1.26.0")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (bioconductor-uri "ccfindR" version))
+ (sha256
+ (base32 "1v8lrgs5rqf0pz5gg7g5hh9y7cj90s8k04bhimhlzr0iah27vhc5"))))
+ (properties
+ `((upstream-name . "ccfindR")
+ (updater-extra-inputs . ("gsl"))))
+ (build-system r-build-system)
+ (inputs (list gsl))
+ (propagated-inputs (list r-ape
+ r-gtools
+ r-irlba
+ r-matrix
+ r-rcolorbrewer
+ r-rcpp
+ r-rcppeigen
+ r-rdpack
+ r-rmpi
+ r-rtsne
+ r-s4vectors
+ r-singlecellexperiment
+ r-summarizedexperiment))
+ (native-inputs (list r-knitr))
+ (home-page "https://dx.doi.org/10.26508/lsa.201900443")
+ (synopsis "Cancer clone finder")
+ (description
+ "This package provides a collection of tools for cancer genomic data
+clustering analyses, including those for single cell RNA-seq. Cell clustering
+and feature gene selection analysis employ Bayesian (and maximum likelihood)
+non-negative matrix factorization (NMF) algorithm. Input data set consists of
+RNA count matrix, gene, and cell bar code annotations. Analysis outputs are
+factor matrices for multiple ranks and marginal likelihood values for each
+rank. The package includes utilities for downstream analyses, including
+meta-gene identification, visualization, and construction of rank-based trees
+for clusters.")
+ (license license:gpl2+)))
+
(define-public r-cellid
(package
(name "r-cellid")