aboutsummaryrefslogtreecommitdiffstats
path: root/lisp/emacs-lisp/cl-seq.el
diff options
context:
space:
mode:
authorStefan Monnier <[email protected]>2012-06-03 21:05:17 -0400
committerStefan Monnier <[email protected]>2012-06-03 21:05:17 -0400
commit7c1898a7b93053cd0431f46f02d82c0a31bfb8bf (patch)
tree13d62ca0ada361b4f60770326b9f7b6abfdaf6b6 /lisp/emacs-lisp/cl-seq.el
parent418cd7265a941032b467215839b3726b3ba37b0b (diff)
* lisp/emacs-lisp/cl-lib.el: Rename from cl.el.
* lisp/emacs-lisp/cl.el: New compatibility file. * emacs-lisp/cl-lib.el, lisp/emacs-lisp/cl-seq.el, lisp/emacs-lisp/cl-macs.el: * lisp/emacs-lisp/cl-extra.el: Rename all top-level functions and variables to obey the "cl-" prefix. * lisp/emacs-lisp/macroexp.el (macroexpand-all-1): Adjust to new name.
Diffstat (limited to 'lisp/emacs-lisp/cl-seq.el')
-rw-r--r--lisp/emacs-lisp/cl-seq.el212
1 files changed, 106 insertions, 106 deletions
diff --git a/lisp/emacs-lisp/cl-seq.el b/lisp/emacs-lisp/cl-seq.el
index 233f0c83a6..1db2f19349 100644
--- a/lisp/emacs-lisp/cl-seq.el
+++ b/lisp/emacs-lisp/cl-seq.el
@@ -41,7 +41,7 @@
;;; Code:
-(require 'cl)
+(require 'cl-lib)
;;; Keyword parsing. This is special-cased here so that we can compile
;;; this file independent from cl-macs.
@@ -118,13 +118,13 @@
;;;###autoload
-(defun reduce (cl-func cl-seq &rest cl-keys)
+(defun cl-reduce (cl-func cl-seq &rest cl-keys)
"Reduce two-argument FUNCTION across SEQ.
\nKeywords supported: :start :end :from-end :initial-value :key
\n(fn FUNCTION SEQ [KEYWORD VALUE]...)"
(cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
(or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
- (setq cl-seq (subseq cl-seq cl-start cl-end))
+ (setq cl-seq (cl-subseq cl-seq cl-start cl-end))
(if cl-from-end (setq cl-seq (nreverse cl-seq)))
(let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value)
(cl-seq (cl-check-key (pop cl-seq)))
@@ -139,7 +139,7 @@
cl-accum)))
;;;###autoload
-(defun fill (seq item &rest cl-keys)
+(defun cl-fill (seq item &rest cl-keys)
"Fill the elements of SEQ with ITEM.
\nKeywords supported: :start :end
\n(fn SEQ ITEM [KEYWORD VALUE]...)"
@@ -159,7 +159,7 @@
seq))
;;;###autoload
-(defun replace (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-replace (cl-seq1 cl-seq2 &rest cl-keys)
"Replace the elements of SEQ1 with the elements of SEQ2.
SEQ1 is destructively modified, then returned.
\nKeywords supported: :start1 :end1 :start2 :end2
@@ -202,7 +202,7 @@ SEQ1 is destructively modified, then returned.
cl-seq1))
;;;###autoload
-(defun remove* (cl-item cl-seq &rest cl-keys)
+(defun cl-remove (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
@@ -216,7 +216,7 @@ to avoid corrupting the original SEQ.
(let ((cl-i (cl--position cl-item cl-seq cl-start cl-end
cl-from-end)))
(if cl-i
- (let ((cl-res (apply 'delete* cl-item (append cl-seq nil)
+ (let ((cl-res (apply 'cl-delete cl-item (append cl-seq nil)
(append (if cl-from-end
(list :end (1+ cl-i))
(list :start cl-i))
@@ -237,10 +237,10 @@ to avoid corrupting the original SEQ.
(not (cl-check-test cl-item (car cl-p))))
(setq cl-p (cdr cl-p) cl-end (1- cl-end)))
(if (and cl-p (> cl-end 0))
- (nconc (ldiff cl-seq cl-p)
+ (nconc (cl-ldiff cl-seq cl-p)
(if (= cl-count 1) (cdr cl-p)
(and (cdr cl-p)
- (apply 'delete* cl-item
+ (apply 'cl-delete cl-item
(copy-sequence (cdr cl-p))
:start 0 :end (1- cl-end)
:count (1- cl-count) cl-keys))))
@@ -248,25 +248,25 @@ to avoid corrupting the original SEQ.
cl-seq)))))
;;;###autoload
-(defun remove-if (cl-pred cl-list &rest cl-keys)
+(defun cl-remove-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'remove* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-remove nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun remove-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-remove-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'remove* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-remove nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun delete* (cl-item cl-seq &rest cl-keys)
+(defun cl-delete (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
@@ -307,33 +307,33 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end)))))
cl-seq)
- (apply 'remove* cl-item cl-seq cl-keys)))))
+ (apply 'cl-remove cl-item cl-seq cl-keys)))))
;;;###autoload
-(defun delete-if (cl-pred cl-list &rest cl-keys)
+(defun cl-delete-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'delete* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-delete nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun delete-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-delete-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'delete* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-delete nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun remove-duplicates (cl-seq &rest cl-keys)
+(defun cl-remove-duplicates (cl-seq &rest cl-keys)
"Return a copy of SEQ with all duplicate elements removed.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
(cl--delete-duplicates cl-seq cl-keys t))
;;;###autoload
-(defun delete-duplicates (cl-seq &rest cl-keys)
+(defun cl-delete-duplicates (cl-seq &rest cl-keys)
"Remove all duplicate elements from SEQ (destructively).
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
@@ -380,7 +380,7 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
;;;###autoload
-(defun substitute (cl-new cl-old cl-seq &rest cl-keys)
+(defun cl-substitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
@@ -398,29 +398,29 @@ to avoid corrupting the original SEQ.
(or cl-from-end
(progn (cl-set-elt cl-seq cl-i cl-new)
(setq cl-i (1+ cl-i) cl-count (1- cl-count))))
- (apply 'nsubstitute cl-new cl-old cl-seq :count cl-count
+ (apply 'cl-nsubstitute cl-new cl-old cl-seq :count cl-count
:start cl-i cl-keys))))))
;;;###autoload
-(defun substitute-if (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-substitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'substitute cl-new nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-substitute cl-new nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'substitute cl-new nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-substitute cl-new nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
+(defun cl-nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
@@ -454,48 +454,48 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
cl-seq))
;;;###autoload
-(defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'nsubstitute cl-new nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-nsubstitute cl-new nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun find (cl-item cl-seq &rest cl-keys)
+(defun cl-find (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (let ((cl-pos (apply 'position cl-item cl-seq cl-keys)))
+ (let ((cl-pos (apply 'cl-position cl-item cl-seq cl-keys)))
(and cl-pos (elt cl-seq cl-pos))))
;;;###autoload
-(defun find-if (cl-pred cl-list &rest cl-keys)
+(defun cl-find-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'find nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-find nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun find-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-find-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'find nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-find nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun position (cl-item cl-seq &rest cl-keys)
+(defun cl-position (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
@@ -526,23 +526,23 @@ Return the index of the matching item, or nil if not found.
(and (< cl-start cl-end) cl-start))))
;;;###autoload
-(defun position-if (cl-pred cl-list &rest cl-keys)
+(defun cl-position-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'position nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-position nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun position-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-position-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'position nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-position nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun count (cl-item cl-seq &rest cl-keys)
+(defun cl-count (cl-item cl-seq &rest cl-keys)
"Count the number of occurrences of ITEM in SEQ.
\nKeywords supported: :test :test-not :key :start :end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
@@ -557,21 +557,21 @@ Return the index of the matching item, or nil if not found.
cl-count)))
;;;###autoload
-(defun count-if (cl-pred cl-list &rest cl-keys)
+(defun cl-count-if (cl-pred cl-list &rest cl-keys)
"Count the number of items satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'count nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-count nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun count-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-count-if-not (cl-pred cl-list &rest cl-keys)
"Count the number of items not satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'count nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-count nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun mismatch (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-mismatch (cl-seq1 cl-seq2 &rest cl-keys)
"Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match. If one sequence is a prefix of the
other, the return value indicates the end of the shorter sequence.
@@ -602,7 +602,7 @@ other, the return value indicates the end of the shorter sequence.
cl-start1)))))
;;;###autoload
-(defun search (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-search (cl-seq1 cl-seq2 &rest cl-keys)
"Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.
@@ -621,7 +621,7 @@ return nil if there are no matches.
(while (and (< cl-start2 cl-end2)
(setq cl-pos (cl--position cl-first cl-seq2
cl-start2 cl-end2 cl-from-end))
- (apply 'mismatch cl-seq1 cl-seq2
+ (apply 'cl-mismatch cl-seq1 cl-seq2
:start1 (1+ cl-start1) :end1 cl-end1
:start2 (1+ cl-pos) :end2 (+ cl-pos cl-len)
:from-end nil cl-keys))
@@ -629,13 +629,13 @@ return nil if there are no matches.
(and (< cl-start2 cl-end2) cl-pos)))))
;;;###autoload
-(defun sort* (cl-seq cl-pred &rest cl-keys)
+(defun cl-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
(if (nlistp cl-seq)
- (replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys))
+ (cl-replace cl-seq (apply 'cl-sort (append cl-seq nil) cl-pred cl-keys))
(cl-parsing-keywords (:key) ()
(if (memq cl-key '(nil identity))
(sort cl-seq cl-pred)
@@ -644,15 +644,15 @@ This is a destructive function; it reuses the storage of SEQ if possible.
(funcall cl-key cl-y)))))))))
;;;###autoload
-(defun stable-sort (cl-seq cl-pred &rest cl-keys)
+(defun cl-stable-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
- (apply 'sort* cl-seq cl-pred cl-keys))
+ (apply 'cl-sort cl-seq cl-pred cl-keys))
;;;###autoload
-(defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
+(defun cl-merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
"Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
sequences, and PREDICATE is a `less-than' predicate on the elements.
@@ -667,11 +667,11 @@ sequences, and PREDICATE is a `less-than' predicate on the elements.
(cl-check-key (car cl-seq1)))
(push (pop cl-seq2) cl-res)
(push (pop cl-seq1) cl-res)))
- (coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
+ (cl-coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
;;; See compiler macro in cl-macs.el
;;;###autoload
-(defun member* (cl-item cl-list &rest cl-keys)
+(defun cl-member (cl-item cl-list &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
\nKeywords supported: :test :test-not :key
@@ -686,31 +686,31 @@ Return the sublist of LIST whose car is ITEM.
(memq cl-item cl-list))))
;;;###autoload
-(defun member-if (cl-pred cl-list &rest cl-keys)
+(defun cl-member-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'member* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-member nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun member-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-member-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'member* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-member nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl--adjoin (cl-item cl-list &rest cl-keys)
(if (cl-parsing-keywords (:key) t
- (apply 'member* (cl-check-key cl-item) cl-list cl-keys))
+ (apply 'cl-member (cl-check-key cl-item) cl-list cl-keys))
cl-list
(cons cl-item cl-list)))
;;; See compiler macro in cl-macs.el
;;;###autoload
-(defun assoc* (cl-item cl-alist &rest cl-keys)
+(defun cl-assoc (cl-item cl-alist &rest cl-keys)
"Find the first item whose car matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
@@ -726,21 +726,21 @@ Return the sublist of LIST whose car matches.
(assq cl-item cl-alist))))
;;;###autoload
-(defun assoc-if (cl-pred cl-list &rest cl-keys)
+(defun cl-assoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose car satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'assoc* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-assoc nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun assoc-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-assoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose car does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'assoc* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-assoc nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun rassoc* (cl-item cl-alist &rest cl-keys)
+(defun cl-rassoc (cl-item cl-alist &rest cl-keys)
"Find the first item whose cdr matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
@@ -754,21 +754,21 @@ Return the sublist of LIST whose car matches.
(rassq cl-item cl-alist)))
;;;###autoload
-(defun rassoc-if (cl-pred cl-list &rest cl-keys)
+(defun cl-rassoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'rassoc* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-rassoc nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun rassoc-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-rassoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'rassoc* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-rassoc nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun union (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-union (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
@@ -782,14 +782,14 @@ to avoid corrupting the original LIST1 and LIST2.
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (or cl-keys (numberp (car cl-list2)))
- (setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys))
+ (setq cl-list1 (apply 'cl-adjoin (car cl-list2) cl-list1 cl-keys))
(or (memq (car cl-list2) cl-list1)
(push (car cl-list2) cl-list1)))
(pop cl-list2))
cl-list1)))
;;;###autoload
-(defun nunion (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nunion (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
@@ -797,10 +797,10 @@ whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
- (t (apply 'union cl-list1 cl-list2 cl-keys))))
+ (t (apply 'cl-union cl-list1 cl-list2 cl-keys))))
;;;###autoload
-(defun intersection (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-intersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
@@ -815,7 +815,7 @@ to avoid corrupting the original LIST1 and LIST2.
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (if (or cl-keys (numberp (car cl-list2)))
- (apply 'member* (cl-check-key (car cl-list2))
+ (apply 'cl-member (cl-check-key (car cl-list2))
cl-list1 cl-keys)
(memq (car cl-list2) cl-list1))
(push (car cl-list2) cl-res))
@@ -823,17 +823,17 @@ to avoid corrupting the original LIST1 and LIST2.
cl-res)))))
;;;###autoload
-(defun nintersection (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nintersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys)))
+ (and cl-list1 cl-list2 (apply 'cl-intersection cl-list1 cl-list2 cl-keys)))
;;;###autoload
-(defun set-difference (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-set-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
@@ -845,7 +845,7 @@ to avoid corrupting the original LIST1 and LIST2.
(let ((cl-res nil))
(while cl-list1
(or (if (or cl-keys (numberp (car cl-list1)))
- (apply 'member* (cl-check-key (car cl-list1))
+ (apply 'cl-member (cl-check-key (car cl-list1))
cl-list2 cl-keys)
(memq (car cl-list1) cl-list2))
(push (car cl-list1) cl-res))
@@ -853,7 +853,7 @@ to avoid corrupting the original LIST1 and LIST2.
cl-res))))
;;;###autoload
-(defun nset-difference (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nset-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
@@ -861,10 +861,10 @@ whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(if (or (null cl-list1) (null cl-list2)) cl-list1
- (apply 'set-difference cl-list1 cl-list2 cl-keys)))
+ (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)))
;;;###autoload
-(defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
@@ -873,11 +873,11 @@ to avoid corrupting the original LIST1 and LIST2.
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
- (t (append (apply 'set-difference cl-list1 cl-list2 cl-keys)
- (apply 'set-difference cl-list2 cl-list1 cl-keys)))))
+ (t (append (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)
+ (apply 'cl-set-difference cl-list2 cl-list1 cl-keys)))))
;;;###autoload
-(defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
@@ -886,11 +886,11 @@ whenever possible.
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
- (t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys)
- (apply 'nset-difference cl-list2 cl-list1 cl-keys)))))
+ (t (nconc (apply 'cl-nset-difference cl-list1 cl-list2 cl-keys)
+ (apply 'cl-nset-difference cl-list2 cl-list1 cl-keys)))))
;;;###autoload
-(defun subsetp (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-subsetp (cl-list1 cl-list2 &rest cl-keys)
"Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
\nKeywords supported: :test :test-not :key
@@ -899,54 +899,54 @@ I.e., if every element of LIST1 also appears in LIST2.
((equal cl-list1 cl-list2) t)
(t (cl-parsing-keywords (:key) (:test :test-not)
(while (and cl-list1
- (apply 'member* (cl-check-key (car cl-list1))
+ (apply 'cl-member (cl-check-key (car cl-list1))
cl-list2 cl-keys))
(pop cl-list1))
(null cl-list1)))))
;;;###autoload
-(defun subst-if (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-subst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
+ (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
;;;###autoload
-(defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+ (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
;;;###autoload
-(defun nsubst (cl-new cl-old cl-tree &rest cl-keys)
+(defun cl-nsubst (cl-new cl-old cl-tree &rest cl-keys)
"Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').
\nKeywords supported: :test :test-not :key
\n(fn NEW OLD TREE [KEYWORD VALUE]...)"
- (apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
+ (apply 'cl-nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
;;;###autoload
-(defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
+ (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
;;;###autoload
-(defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+ (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
;;;###autoload
-(defun sublis (cl-alist cl-tree &rest cl-keys)
+(defun cl-sublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
\nKeywords supported: :test :test-not :key
@@ -969,7 +969,7 @@ Return a copy of TREE with all matching elements replaced.
cl-tree))))
;;;###autoload
-(defun nsublis (cl-alist cl-tree &rest cl-keys)
+(defun cl-nsublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
\nKeywords supported: :test :test-not :key
@@ -994,7 +994,7 @@ Any matching element of TREE is changed via a call to `setcar'.
(setq cl-tree (cdr cl-tree))))))
;;;###autoload
-(defun tree-equal (cl-x cl-y &rest cl-keys)
+(defun cl-tree-equal (cl-x cl-y &rest cl-keys)
"Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
\nKeywords supported: :test :test-not :key