exports.id = 624; exports.ids = [624]; exports.modules = { /***/ 265: /***/ (function(__unused_webpack_module, exports) { // https://github.com/vasturiano/d3-binarytree v0.2.0 Copyright 2021 Vasco Asturiano (function (global, factory) { true ? factory(exports) : 0; })(this, function (exports) { 'use strict'; function tree_add(d) { var x = +this._x.call(null, d); return add(this.cover(x), x, d); } function add(tree, x, d) { if (isNaN(x)) return tree; // ignore invalid points var parent, node = tree._root, leaf = { data: d }, x0 = tree._x0, x1 = tree._x1, xm, xp, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; if (parent = node, !(node = node[i = +right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); if (x === xp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(2) : tree._root = new Array(2); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; } while ((i = +right) === (j = +(xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { var i, n = data.length, x, xz = new Array(n), x0 = Infinity, x1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, data[i]))) continue; xz[i] = x; if (x < x0) x0 = x; if (x > x1) x1 = x; } // If there were no (valid) points, abort. if (x0 > x1) return this; // Expand the tree to cover the new points. this.cover(x0).cover(x1); // Add the new points. for (i = 0; i < n; ++i) { add(this, xz[i], data[i]); } return this; } function tree_cover(x) { if (isNaN(x = +x)) return this; // ignore invalid points var x0 = this._x0, x1 = this._x1; // If the binarytree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing half boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1) { i = +(x < x0); parent = new Array(2), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z; break; case 1: x0 = x1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._x1 = x1; return this; } function tree_data() { var data = []; this.visit(function (node) { if (!node.length) do data.push(node.data); while (node = node.next); }); return data; } function tree_extent(_) { return arguments.length ? this.cover(+_[0][0]).cover(+_[1][0]) : isNaN(this._x0) ? undefined : [[this._x0], [this._x1]]; } function Half(node, x0, x1) { this.node = node; this.x0 = x0; this.x1 = x1; } function tree_find(x, radius) { var data, x0 = this._x0, x1, x2, x3 = this._x1, halves = [], node = this._root, q, i; if (node) halves.push(new Half(node, x0, x3)); if (radius == null) radius = Infinity;else { x0 = x - radius; x3 = x + radius; } while (q = halves.pop()) { // Stop searching if this half can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (x2 = q.x1) < x0) continue; // Bisect the current half. if (node.length) { var xm = (x1 + x2) / 2; halves.push(new Half(node[1], xm, x2), new Half(node[0], x1, xm)); // Visit the closest half first. if (i = +(x >= xm)) { q = halves[halves.length - 1]; halves[halves.length - 1] = halves[halves.length - 1 - i]; halves[halves.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var d = Math.abs(x - +this._x.call(null, node.data)); if (d < radius) { radius = d; x0 = x - d; x3 = x + d; data = node.data; } } } return data; } function tree_remove(d) { if (isNaN(x = +this._x.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, x1 = this._x1, x, xm, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; if (!(parent = node, node = node[i = +right])) return this; if (!node.length) break; if (parent[i + 1 & 1]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return next ? previous.next = next : delete previous.next, this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1]) && node === (parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node;else this._root = node; } return this; } function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root() { return this._root; } function tree_size() { var size = 0; this.visit(function (node) { if (!node.length) do ++size; while (node = node.next); }); return size; } function tree_visit(callback) { var halves = [], q, node = this._root, child, x0, x1; if (node) halves.push(new Half(node, this._x0, this._x1)); while (q = halves.pop()) { if (!callback(node = q.node, x0 = q.x0, x1 = q.x1) && node.length) { var xm = (x0 + x1) / 2; if (child = node[1]) halves.push(new Half(child, xm, x1)); if (child = node[0]) halves.push(new Half(child, x0, xm)); } } return this; } function tree_visitAfter(callback) { var halves = [], next = [], q; if (this._root) halves.push(new Half(this._root, this._x0, this._x1)); while (q = halves.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, x1 = q.x1, xm = (x0 + x1) / 2; if (child = node[0]) halves.push(new Half(child, x0, xm)); if (child = node[1]) halves.push(new Half(child, xm, x1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.x1); } return this; } function defaultX(d) { return d[0]; } function tree_x(_) { return arguments.length ? (this._x = _, this) : this._x; } function binarytree(nodes, x) { var tree = new Binarytree(x == null ? defaultX : x, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Binarytree(x, x0, x1) { this._x = x; this._x0 = x0; this._x1 = x1; this._root = undefined; } function leaf_copy(leaf) { var copy = { data: leaf.data }, next = copy; while (leaf = leaf.next) next = next.next = { data: leaf.data }; return copy; } var treeProto = binarytree.prototype = Binarytree.prototype; treeProto.copy = function () { var copy = new Binarytree(this._x, this._x0, this._x1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{ source: node, target: copy._root = new Array(2) }]; while (node = nodes.pop()) { for (var i = 0; i < 2; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({ source: child, target: node.target[i] = new Array(2) });else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; exports.binarytree = binarytree; Object.defineProperty(exports, '__esModule', { value: true }); }); /***/ }), /***/ 624: /***/ (function(__unused_webpack_module, __webpack_exports__, __webpack_require__) { "use strict"; // ESM COMPAT FLAG __webpack_require__.r(__webpack_exports__); // EXPORTS __webpack_require__.d(__webpack_exports__, { "forceCenter": function() { return /* reexport */ center; }, "forceCollide": function() { return /* reexport */ collide; }, "forceLink": function() { return /* reexport */ src_link; }, "forceManyBody": function() { return /* reexport */ manyBody; }, "forceRadial": function() { return /* reexport */ radial; }, "forceSimulation": function() { return /* reexport */ simulation; }, "forceX": function() { return /* reexport */ src_x; }, "forceY": function() { return /* reexport */ src_y; }, "forceZ": function() { return /* reexport */ src_z; } }); ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/center.js /* harmony default export */ function center(x, y, z) { var nodes, strength = 1; if (x == null) x = 0; if (y == null) y = 0; if (z == null) z = 0; function force() { var i, n = nodes.length, node, sx = 0, sy = 0, sz = 0; for (i = 0; i < n; ++i) { node = nodes[i], sx += node.x || 0, sy += node.y || 0, sz += node.z || 0; } for (sx = (sx / n - x) * strength, sy = (sy / n - y) * strength, sz = (sz / n - z) * strength, i = 0; i < n; ++i) { node = nodes[i]; if (sx) { node.x -= sx; } if (sy) { node.y -= sy; } if (sz) { node.z -= sz; } } } force.initialize = function (_) { nodes = _; }; force.x = function (_) { return arguments.length ? (x = +_, force) : x; }; force.y = function (_) { return arguments.length ? (y = +_, force) : y; }; force.z = function (_) { return arguments.length ? (z = +_, force) : z; }; force.strength = function (_) { return arguments.length ? (strength = +_, force) : strength; }; return force; } // EXTERNAL MODULE: ./node_modules/d3-binarytree/dist/d3-binarytree.js var d3_binarytree = __webpack_require__(265); ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/add.js /* harmony default export */ function add(d) { const x = +this._x.call(null, d), y = +this._y.call(null, d); return add_add(this.cover(x, y), x, y, d); } function add_add(tree, x, y, d) { if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points var parent, node = tree._root, leaf = { data: d }, x0 = tree._x0, y0 = tree._y0, x1 = tree._x1, y1 = tree._y1, xm, ym, xp, yp, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym;else y1 = ym; if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym;else y1 = ym; } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | xp >= xm)); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { var d, i, n = data.length, x, y, xz = new Array(n), yz = new Array(n), x0 = Infinity, y0 = Infinity, x1 = -Infinity, y1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue; xz[i] = x; yz[i] = y; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1) return this; // Expand the tree to cover the new points. this.cover(x0, y0).cover(x1, y1); // Add the new points. for (i = 0; i < n; ++i) { add_add(this, xz[i], yz[i], data[i]); } return this; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/cover.js /* harmony default export */ function cover(x, y) { if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1; // If the quadtree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing quadrant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1) { i = (y < y0) << 1 | x < x0; parent = new Array(4), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z, y1 = y0 + z; break; case 1: x0 = x1 - z, y1 = y0 + z; break; case 2: x1 = x0 + z, y0 = y1 - z; break; case 3: x0 = x1 - z, y0 = y1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; return this; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/data.js /* harmony default export */ function data() { var data = []; this.visit(function (node) { if (!node.length) do data.push(node.data); while (node = node.next); }); return data; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/extent.js /* harmony default export */ function extent(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]]; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/quad.js /* harmony default export */ function quad(node, x0, y0, x1, y1) { this.node = node; this.x0 = x0; this.y0 = y0; this.x1 = x1; this.y1 = y1; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/find.js /* harmony default export */ function find(x, y, radius) { var data, x0 = this._x0, y0 = this._y0, x1, y1, x2, y2, x3 = this._x1, y3 = this._y1, quads = [], node = this._root, q, i; if (node) quads.push(new quad(node, x0, y0, x3, y3)); if (radius == null) radius = Infinity;else { x0 = x - radius, y0 = y - radius; x3 = x + radius, y3 = y + radius; radius *= radius; } while (q = quads.pop()) { // Stop searching if this quadrant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0) continue; // Bisect the current quadrant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2; quads.push(new quad(node[3], xm, ym, x2, y2), new quad(node[2], x1, ym, xm, y2), new quad(node[1], xm, y1, x2, ym), new quad(node[0], x1, y1, xm, ym)); // Visit the closest quadrant first. if (i = (y >= ym) << 1 | x >= xm) { q = quads[quads.length - 1]; quads[quads.length - 1] = quads[quads.length - 1 - i]; quads[quads.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), d2 = dx * dx + dy * dy; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d; x3 = x + d, y3 = y + d; data = node.data; } } } return data; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/remove.js /* harmony default export */ function remove(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1, x, y, xm, ym, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym;else y1 = ym; if (!(parent = node, node = node[i = bottom << 1 | right])) return this; if (!node.length) break; if (parent[i + 1 & 3] || parent[i + 2 & 3] || parent[i + 3 & 3]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return next ? previous.next = next : delete previous.next, this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3]) && node === (parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node;else this._root = node; } return this; } function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/root.js /* harmony default export */ function root() { return this._root; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/size.js /* harmony default export */ function size() { var size = 0; this.visit(function (node) { if (!node.length) do ++size; while (node = node.next); }); return size; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/visit.js /* harmony default export */ function visit(callback) { var quads = [], q, node = this._root, child, x0, y0, x1, y1; if (node) quads.push(new quad(node, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[3]) quads.push(new quad(child, xm, ym, x1, y1)); if (child = node[2]) quads.push(new quad(child, x0, ym, xm, y1)); if (child = node[1]) quads.push(new quad(child, xm, y0, x1, ym)); if (child = node[0]) quads.push(new quad(child, x0, y0, xm, ym)); } } return this; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/visitAfter.js /* harmony default export */ function visitAfter(callback) { var quads = [], next = [], q; if (this._root) quads.push(new quad(this._root, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[0]) quads.push(new quad(child, x0, y0, xm, ym)); if (child = node[1]) quads.push(new quad(child, xm, y0, x1, ym)); if (child = node[2]) quads.push(new quad(child, x0, ym, xm, y1)); if (child = node[3]) quads.push(new quad(child, xm, ym, x1, y1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.x1, q.y1); } return this; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/x.js function defaultX(d) { return d[0]; } /* harmony default export */ function x(_) { return arguments.length ? (this._x = _, this) : this._x; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/y.js function defaultY(d) { return d[1]; } /* harmony default export */ function y(_) { return arguments.length ? (this._y = _, this) : this._y; } ;// CONCATENATED MODULE: ./node_modules/d3-quadtree/src/quadtree.js function quadtree(nodes, x, y) { var tree = new Quadtree(x == null ? defaultX : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Quadtree(x, y, x0, y0, x1, y1) { this._x = x; this._y = y; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; this._root = undefined; } function leaf_copy(leaf) { var copy = { data: leaf.data }, next = copy; while (leaf = leaf.next) next = next.next = { data: leaf.data }; return copy; } var treeProto = quadtree.prototype = Quadtree.prototype; treeProto.copy = function () { var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{ source: node, target: copy._root = new Array(4) }]; while (node = nodes.pop()) { for (var i = 0; i < 4; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({ source: child, target: node.target[i] = new Array(4) });else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = add; treeProto.addAll = addAll; treeProto.cover = cover; treeProto.data = data; treeProto.extent = extent; treeProto.find = find; treeProto.remove = remove; treeProto.removeAll = removeAll; treeProto.root = root; treeProto.size = size; treeProto.visit = visit; treeProto.visitAfter = visitAfter; treeProto.x = x; treeProto.y = y; // EXTERNAL MODULE: ./node_modules/d3-octree/dist/d3-octree.js var d3_octree = __webpack_require__(681); ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/constant.js /* harmony default export */ function constant(x) { return function () { return x; }; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/jiggle.js /* harmony default export */ function jiggle(random) { return (random() - 0.5) * 1e-6; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/collide.js function collide_x(d) { return d.x + d.vx; } function collide_y(d) { return d.y + d.vy; } function z(d) { return d.z + d.vz; } /* harmony default export */ function collide(radius) { var nodes, nDim, radii, random, strength = 1, iterations = 1; if (typeof radius !== "function") radius = constant(radius == null ? 1 : +radius); function force() { var i, n = nodes.length, tree, node, xi, yi, zi, ri, ri2; for (var k = 0; k < iterations; ++k) { tree = (nDim === 1 ? (0,d3_binarytree.binarytree)(nodes, collide_x) : nDim === 2 ? quadtree(nodes, collide_x, collide_y) : nDim === 3 ? (0,d3_octree.octree)(nodes, collide_x, collide_y, z) : null).visitAfter(prepare); for (i = 0; i < n; ++i) { node = nodes[i]; ri = radii[node.index], ri2 = ri * ri; xi = node.x + node.vx; if (nDim > 1) { yi = node.y + node.vy; } if (nDim > 2) { zi = node.z + node.vz; } tree.visit(apply); } } function apply(treeNode, arg1, arg2, arg3, arg4, arg5, arg6) { var args = [arg1, arg2, arg3, arg4, arg5, arg6]; var x0 = args[0], y0 = args[1], z0 = args[2], x1 = args[nDim], y1 = args[nDim + 1], z1 = args[nDim + 2]; var data = treeNode.data, rj = treeNode.r, r = ri + rj; if (data) { if (data.index > node.index) { var x = xi - data.x - data.vx, y = nDim > 1 ? yi - data.y - data.vy : 0, z = nDim > 2 ? zi - data.z - data.vz : 0, l = x * x + y * y + z * z; if (l < r * r) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; l = (r - (l = Math.sqrt(l))) / l * strength; node.vx += (x *= l) * (r = (rj *= rj) / (ri2 + rj)); if (nDim > 1) { node.vy += (y *= l) * r; } if (nDim > 2) { node.vz += (z *= l) * r; } data.vx -= x * (r = 1 - r); if (nDim > 1) { data.vy -= y * r; } if (nDim > 2) { data.vz -= z * r; } } } return; } return x0 > xi + r || x1 < xi - r || nDim > 1 && (y0 > yi + r || y1 < yi - r) || nDim > 2 && (z0 > zi + r || z1 < zi - r); } } function prepare(treeNode) { if (treeNode.data) return treeNode.r = radii[treeNode.data.index]; for (var i = treeNode.r = 0; i < Math.pow(2, nDim); ++i) { if (treeNode[i] && treeNode[i].r > treeNode.r) { treeNode.r = treeNode[i].r; } } } function initialize() { if (!nodes) return; var i, n = nodes.length, node; radii = new Array(n); for (i = 0; i < n; ++i) node = nodes[i], radii[node.index] = +radius(node, i, nodes); } force.initialize = function (_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.iterations = function (_) { return arguments.length ? (iterations = +_, force) : iterations; }; force.strength = function (_) { return arguments.length ? (strength = +_, force) : strength; }; force.radius = function (_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), initialize(), force) : radius; }; return force; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/link.js function index(d) { return d.index; } function link_find(nodeById, nodeId) { var node = nodeById.get(nodeId); if (!node) throw new Error("node not found: " + nodeId); return node; } /* harmony default export */ function src_link(links) { var id = index, strength = defaultStrength, strengths, distance = constant(30), distances, nodes, nDim, count, bias, random, iterations = 1; if (links == null) links = []; function defaultStrength(link) { return 1 / Math.min(count[link.source.index], count[link.target.index]); } function force(alpha) { for (var k = 0, n = links.length; k < iterations; ++k) { for (var i = 0, link, source, target, x = 0, y = 0, z = 0, l, b; i < n; ++i) { link = links[i], source = link.source, target = link.target; x = target.x + target.vx - source.x - source.vx || jiggle(random); if (nDim > 1) { y = target.y + target.vy - source.y - source.vy || jiggle(random); } if (nDim > 2) { z = target.z + target.vz - source.z - source.vz || jiggle(random); } l = Math.sqrt(x * x + y * y + z * z); l = (l - distances[i]) / l * alpha * strengths[i]; x *= l, y *= l, z *= l; target.vx -= x * (b = bias[i]); if (nDim > 1) { target.vy -= y * b; } if (nDim > 2) { target.vz -= z * b; } source.vx += x * (b = 1 - b); if (nDim > 1) { source.vy += y * b; } if (nDim > 2) { source.vz += z * b; } } } } function initialize() { if (!nodes) return; var i, n = nodes.length, m = links.length, nodeById = new Map(nodes.map((d, i) => [id(d, i, nodes), d])), link; for (i = 0, count = new Array(n); i < m; ++i) { link = links[i], link.index = i; if (typeof link.source !== "object") link.source = link_find(nodeById, link.source); if (typeof link.target !== "object") link.target = link_find(nodeById, link.target); count[link.source.index] = (count[link.source.index] || 0) + 1; count[link.target.index] = (count[link.target.index] || 0) + 1; } for (i = 0, bias = new Array(m); i < m; ++i) { link = links[i], bias[i] = count[link.source.index] / (count[link.source.index] + count[link.target.index]); } strengths = new Array(m), initializeStrength(); distances = new Array(m), initializeDistance(); } function initializeStrength() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { strengths[i] = +strength(links[i], i, links); } } function initializeDistance() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { distances[i] = +distance(links[i], i, links); } } force.initialize = function (_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.links = function (_) { return arguments.length ? (links = _, initialize(), force) : links; }; force.id = function (_) { return arguments.length ? (id = _, force) : id; }; force.iterations = function (_) { return arguments.length ? (iterations = +_, force) : iterations; }; force.strength = function (_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initializeStrength(), force) : strength; }; force.distance = function (_) { return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), initializeDistance(), force) : distance; }; return force; } ;// CONCATENATED MODULE: ./node_modules/d3-dispatch/src/dispatch.js var noop = { value: () => {} }; function dispatch() { for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) { if (!(t = arguments[i] + "") || t in _ || /[\s.]/.test(t)) throw new Error("illegal type: " + t); _[t] = []; } return new Dispatch(_); } function Dispatch(_) { this._ = _; } function parseTypenames(typenames, types) { return typenames.trim().split(/^|\s+/).map(function (t) { var name = "", i = t.indexOf("."); if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i); if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t); return { type: t, name: name }; }); } Dispatch.prototype = dispatch.prototype = { constructor: Dispatch, on: function (typename, callback) { var _ = this._, T = parseTypenames(typename + "", _), t, i = -1, n = T.length; // If no callback was specified, return the callback of the given type and name. if (arguments.length < 2) { while (++i < n) if ((t = (typename = T[i]).type) && (t = get(_[t], typename.name))) return t; return; } // If a type was specified, set the callback for the given type and name. // Otherwise, if a null callback was specified, remove callbacks of the given name. if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback); while (++i < n) { if (t = (typename = T[i]).type) _[t] = set(_[t], typename.name, callback);else if (callback == null) for (t in _) _[t] = set(_[t], typename.name, null); } return this; }, copy: function () { var copy = {}, _ = this._; for (var t in _) copy[t] = _[t].slice(); return new Dispatch(copy); }, call: function (type, that) { if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2]; if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); }, apply: function (type, that, args) { if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); } }; function get(type, name) { for (var i = 0, n = type.length, c; i < n; ++i) { if ((c = type[i]).name === name) { return c.value; } } } function set(type, name, callback) { for (var i = 0, n = type.length; i < n; ++i) { if (type[i].name === name) { type[i] = noop, type = type.slice(0, i).concat(type.slice(i + 1)); break; } } if (callback != null) type.push({ name: name, value: callback }); return type; } /* harmony default export */ var src_dispatch = (dispatch); ;// CONCATENATED MODULE: ./node_modules/d3-timer/src/timer.js var timer_frame = 0, // is an animation frame pending? timeout = 0, // is a timeout pending? interval = 0, // are any timers active? pokeDelay = 1000, // how frequently we check for clock skew taskHead, taskTail, clockLast = 0, clockNow = 0, clockSkew = 0, clock = typeof performance === "object" && performance.now ? performance : Date, setFrame = false ? 0 : function (f) { setTimeout(f, 17); }; function now() { return clockNow || (setFrame(clearNow), clockNow = clock.now() + clockSkew); } function clearNow() { clockNow = 0; } function Timer() { this._call = this._time = this._next = null; } Timer.prototype = timer.prototype = { constructor: Timer, restart: function (callback, delay, time) { if (typeof callback !== "function") throw new TypeError("callback is not a function"); time = (time == null ? now() : +time) + (delay == null ? 0 : +delay); if (!this._next && taskTail !== this) { if (taskTail) taskTail._next = this;else taskHead = this; taskTail = this; } this._call = callback; this._time = time; sleep(); }, stop: function () { if (this._call) { this._call = null; this._time = Infinity; sleep(); } } }; function timer(callback, delay, time) { var t = new Timer(); t.restart(callback, delay, time); return t; } function timerFlush() { now(); // Get the current time, if not already set. ++timer_frame; // Pretend we’ve set an alarm, if we haven’t already. var t = taskHead, e; while (t) { if ((e = clockNow - t._time) >= 0) t._call.call(undefined, e); t = t._next; } --timer_frame; } function wake() { clockNow = (clockLast = clock.now()) + clockSkew; timer_frame = timeout = 0; try { timerFlush(); } finally { timer_frame = 0; nap(); clockNow = 0; } } function poke() { var now = clock.now(), delay = now - clockLast; if (delay > pokeDelay) clockSkew -= delay, clockLast = now; } function nap() { var t0, t1 = taskHead, t2, time = Infinity; while (t1) { if (t1._call) { if (time > t1._time) time = t1._time; t0 = t1, t1 = t1._next; } else { t2 = t1._next, t1._next = null; t1 = t0 ? t0._next = t2 : taskHead = t2; } } taskTail = t0; sleep(time); } function sleep(time) { if (timer_frame) return; // Soonest alarm already set, or will be. if (timeout) timeout = clearTimeout(timeout); var delay = time - clockNow; // Strictly less than if we recomputed clockNow. if (delay > 24) { if (time < Infinity) timeout = setTimeout(wake, time - clock.now() - clockSkew); if (interval) interval = clearInterval(interval); } else { if (!interval) clockLast = clock.now(), interval = setInterval(poke, pokeDelay); timer_frame = 1, setFrame(wake); } } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/lcg.js // https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use const a = 1664525; const c = 1013904223; const m = 4294967296; // 2^32 /* harmony default export */ function lcg() { let s = 1; return () => (s = (a * s + c) % m) / m; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/simulation.js var MAX_DIMENSIONS = 3; function simulation_x(d) { return d.x; } function simulation_y(d) { return d.y; } function simulation_z(d) { return d.z; } var initialRadius = 10, initialAngleRoll = Math.PI * (3 - Math.sqrt(5)), // Golden ratio angle initialAngleYaw = Math.PI * 20 / (9 + Math.sqrt(221)); // Markov irrational number /* harmony default export */ function simulation(nodes, numDimensions) { numDimensions = numDimensions || 2; var nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(numDimensions))), simulation, alpha = 1, alphaMin = 0.001, alphaDecay = 1 - Math.pow(alphaMin, 1 / 300), alphaTarget = 0, velocityDecay = 0.6, forces = new Map(), stepper = timer(step), event = src_dispatch("tick", "end"), random = lcg(); if (nodes == null) nodes = []; function step() { tick(); event.call("tick", simulation); if (alpha < alphaMin) { stepper.stop(); event.call("end", simulation); } } function tick(iterations) { var i, n = nodes.length, node; if (iterations === undefined) iterations = 1; for (var k = 0; k < iterations; ++k) { alpha += (alphaTarget - alpha) * alphaDecay; forces.forEach(function (force) { force(alpha); }); for (i = 0; i < n; ++i) { node = nodes[i]; if (node.fx == null) node.x += node.vx *= velocityDecay;else node.x = node.fx, node.vx = 0; if (nDim > 1) { if (node.fy == null) node.y += node.vy *= velocityDecay;else node.y = node.fy, node.vy = 0; } if (nDim > 2) { if (node.fz == null) node.z += node.vz *= velocityDecay;else node.z = node.fz, node.vz = 0; } } } return simulation; } function initializeNodes() { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.index = i; if (node.fx != null) node.x = node.fx; if (node.fy != null) node.y = node.fy; if (node.fz != null) node.z = node.fz; if (isNaN(node.x) || nDim > 1 && isNaN(node.y) || nDim > 2 && isNaN(node.z)) { var radius = initialRadius * (nDim > 2 ? Math.cbrt(0.5 + i) : nDim > 1 ? Math.sqrt(0.5 + i) : i), rollAngle = i * initialAngleRoll, yawAngle = i * initialAngleYaw; if (nDim === 1) { node.x = radius; } else if (nDim === 2) { node.x = radius * Math.cos(rollAngle); node.y = radius * Math.sin(rollAngle); } else { // 3 dimensions: use spherical distribution along 2 irrational number angles node.x = radius * Math.sin(rollAngle) * Math.cos(yawAngle); node.y = radius * Math.cos(rollAngle); node.z = radius * Math.sin(rollAngle) * Math.sin(yawAngle); } } if (isNaN(node.vx) || nDim > 1 && isNaN(node.vy) || nDim > 2 && isNaN(node.vz)) { node.vx = 0; if (nDim > 1) { node.vy = 0; } if (nDim > 2) { node.vz = 0; } } } } function initializeForce(force) { if (force.initialize) force.initialize(nodes, random, nDim); return force; } initializeNodes(); return simulation = { tick: tick, restart: function () { return stepper.restart(step), simulation; }, stop: function () { return stepper.stop(), simulation; }, numDimensions: function (_) { return arguments.length ? (nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(_))), forces.forEach(initializeForce), simulation) : nDim; }, nodes: function (_) { return arguments.length ? (nodes = _, initializeNodes(), forces.forEach(initializeForce), simulation) : nodes; }, alpha: function (_) { return arguments.length ? (alpha = +_, simulation) : alpha; }, alphaMin: function (_) { return arguments.length ? (alphaMin = +_, simulation) : alphaMin; }, alphaDecay: function (_) { return arguments.length ? (alphaDecay = +_, simulation) : +alphaDecay; }, alphaTarget: function (_) { return arguments.length ? (alphaTarget = +_, simulation) : alphaTarget; }, velocityDecay: function (_) { return arguments.length ? (velocityDecay = 1 - _, simulation) : 1 - velocityDecay; }, randomSource: function (_) { return arguments.length ? (random = _, forces.forEach(initializeForce), simulation) : random; }, force: function (name, _) { return arguments.length > 1 ? (_ == null ? forces.delete(name) : forces.set(name, initializeForce(_)), simulation) : forces.get(name); }, find: function () { var args = Array.prototype.slice.call(arguments); var x = args.shift() || 0, y = (nDim > 1 ? args.shift() : null) || 0, z = (nDim > 2 ? args.shift() : null) || 0, radius = args.shift() || Infinity; var i = 0, n = nodes.length, dx, dy, dz, d2, node, closest; radius *= radius; for (i = 0; i < n; ++i) { node = nodes[i]; dx = x - node.x; dy = y - (node.y || 0); dz = z - (node.z || 0); d2 = dx * dx + dy * dy + dz * dz; if (d2 < radius) closest = node, radius = d2; } return closest; }, on: function (name, _) { return arguments.length > 1 ? (event.on(name, _), simulation) : event.on(name); } }; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/manyBody.js /* harmony default export */ function manyBody() { var nodes, nDim, node, random, alpha, strength = constant(-30), strengths, distanceMin2 = 1, distanceMax2 = Infinity, theta2 = 0.81; function force(_) { var i, n = nodes.length, tree = (nDim === 1 ? (0,d3_binarytree.binarytree)(nodes, simulation_x) : nDim === 2 ? quadtree(nodes, simulation_x, simulation_y) : nDim === 3 ? (0,d3_octree.octree)(nodes, simulation_x, simulation_y, simulation_z) : null).visitAfter(accumulate); for (alpha = _, i = 0; i < n; ++i) node = nodes[i], tree.visit(apply); } function initialize() { if (!nodes) return; var i, n = nodes.length, node; strengths = new Array(n); for (i = 0; i < n; ++i) node = nodes[i], strengths[node.index] = +strength(node, i, nodes); } function accumulate(treeNode) { var strength = 0, q, c, weight = 0, x, y, z, i; var numChildren = treeNode.length; // For internal nodes, accumulate forces from children. if (numChildren) { for (x = y = z = i = 0; i < numChildren; ++i) { if ((q = treeNode[i]) && (c = Math.abs(q.value))) { strength += q.value, weight += c, x += c * (q.x || 0), y += c * (q.y || 0), z += c * (q.z || 0); } } strength *= Math.sqrt(4 / numChildren); // scale accumulated strength according to number of dimensions treeNode.x = x / weight; if (nDim > 1) { treeNode.y = y / weight; } if (nDim > 2) { treeNode.z = z / weight; } } // For leaf nodes, accumulate forces from coincident nodes. else { q = treeNode; q.x = q.data.x; if (nDim > 1) { q.y = q.data.y; } if (nDim > 2) { q.z = q.data.z; } do strength += strengths[q.data.index]; while (q = q.next); } treeNode.value = strength; } function apply(treeNode, x1, arg1, arg2, arg3) { if (!treeNode.value) return true; var x2 = [arg1, arg2, arg3][nDim - 1]; var x = treeNode.x - node.x, y = nDim > 1 ? treeNode.y - node.y : 0, z = nDim > 2 ? treeNode.z - node.z : 0, w = x2 - x1, l = x * x + y * y + z * z; // Apply the Barnes-Hut approximation if possible. // Limit forces for very close nodes; randomize direction if coincident. if (w * w / theta2 < l) { if (l < distanceMax2) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); node.vx += x * treeNode.value * alpha / l; if (nDim > 1) { node.vy += y * treeNode.value * alpha / l; } if (nDim > 2) { node.vz += z * treeNode.value * alpha / l; } } return true; } // Otherwise, process points directly. else if (treeNode.length || l >= distanceMax2) return; // Limit forces for very close nodes; randomize direction if coincident. if (treeNode.data !== node || treeNode.next) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); } do if (treeNode.data !== node) { w = strengths[treeNode.data.index] * alpha / l; node.vx += x * w; if (nDim > 1) { node.vy += y * w; } if (nDim > 2) { node.vz += z * w; } } while (treeNode = treeNode.next); } force.initialize = function (_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.strength = function (_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.distanceMin = function (_) { return arguments.length ? (distanceMin2 = _ * _, force) : Math.sqrt(distanceMin2); }; force.distanceMax = function (_) { return arguments.length ? (distanceMax2 = _ * _, force) : Math.sqrt(distanceMax2); }; force.theta = function (_) { return arguments.length ? (theta2 = _ * _, force) : Math.sqrt(theta2); }; return force; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/radial.js /* harmony default export */ function radial(radius, x, y, z) { var nodes, nDim, strength = constant(0.1), strengths, radiuses; if (typeof radius !== "function") radius = constant(+radius); if (x == null) x = 0; if (y == null) y = 0; if (z == null) z = 0; function force(alpha) { for (var i = 0, n = nodes.length; i < n; ++i) { var node = nodes[i], dx = node.x - x || 1e-6, dy = (node.y || 0) - y || 1e-6, dz = (node.z || 0) - z || 1e-6, r = Math.sqrt(dx * dx + dy * dy + dz * dz), k = (radiuses[i] - r) * strengths[i] * alpha / r; node.vx += dx * k; if (nDim > 1) { node.vy += dy * k; } if (nDim > 2) { node.vz += dz * k; } } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); radiuses = new Array(n); for (i = 0; i < n; ++i) { radiuses[i] = +radius(nodes[i], i, nodes); strengths[i] = isNaN(radiuses[i]) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function (initNodes, ...args) { nodes = initNodes; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.strength = function (_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.radius = function (_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), initialize(), force) : radius; }; force.x = function (_) { return arguments.length ? (x = +_, force) : x; }; force.y = function (_) { return arguments.length ? (y = +_, force) : y; }; force.z = function (_) { return arguments.length ? (z = +_, force) : z; }; return force; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/x.js /* harmony default export */ function src_x(x) { var strength = constant(0.1), nodes, strengths, xz; if (typeof x !== "function") x = constant(x == null ? 0 : +x); function force(alpha) { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.vx += (xz[i] - node.x) * strengths[i] * alpha; } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); xz = new Array(n); for (i = 0; i < n; ++i) { strengths[i] = isNaN(xz[i] = +x(nodes[i], i, nodes)) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function (_) { nodes = _; initialize(); }; force.strength = function (_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.x = function (_) { return arguments.length ? (x = typeof _ === "function" ? _ : constant(+_), initialize(), force) : x; }; return force; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/y.js /* harmony default export */ function src_y(y) { var strength = constant(0.1), nodes, strengths, yz; if (typeof y !== "function") y = constant(y == null ? 0 : +y); function force(alpha) { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.vy += (yz[i] - node.y) * strengths[i] * alpha; } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); yz = new Array(n); for (i = 0; i < n; ++i) { strengths[i] = isNaN(yz[i] = +y(nodes[i], i, nodes)) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function (_) { nodes = _; initialize(); }; force.strength = function (_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.y = function (_) { return arguments.length ? (y = typeof _ === "function" ? _ : constant(+_), initialize(), force) : y; }; return force; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/z.js /* harmony default export */ function src_z(z) { var strength = constant(0.1), nodes, strengths, zz; if (typeof z !== "function") z = constant(z == null ? 0 : +z); function force(alpha) { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.vz += (zz[i] - node.z) * strengths[i] * alpha; } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); zz = new Array(n); for (i = 0; i < n; ++i) { strengths[i] = isNaN(zz[i] = +z(nodes[i], i, nodes)) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function (_) { nodes = _; initialize(); }; force.strength = function (_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.z = function (_) { return arguments.length ? (z = typeof _ === "function" ? _ : constant(+_), initialize(), force) : z; }; return force; } ;// CONCATENATED MODULE: ./node_modules/d3-force-3d/src/index.js /***/ }), /***/ 681: /***/ (function(__unused_webpack_module, exports) { // https://github.com/vasturiano/d3-octree v0.2.0 Copyright 2021 Vasco Asturiano (function (global, factory) { true ? factory(exports) : 0; })(this, function (exports) { 'use strict'; function tree_add(d) { var x = +this._x.call(null, d), y = +this._y.call(null, d), z = +this._z.call(null, d); return add(this.cover(x, y, z), x, y, z, d); } function add(tree, x, y, z, d) { if (isNaN(x) || isNaN(y) || isNaN(z)) return tree; // ignore invalid points var parent, node = tree._root, leaf = { data: d }, x0 = tree._x0, y0 = tree._y0, z0 = tree._z0, x1 = tree._x1, y1 = tree._y1, z1 = tree._z1, xm, ym, zm, xp, yp, zp, right, bottom, deep, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym;else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm;else z1 = zm; if (parent = node, !(node = node[i = deep << 2 | bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); zp = +tree._z.call(null, node.data); if (x === xp && y === yp && z === zp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(8) : tree._root = new Array(8); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym;else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm;else z1 = zm; } while ((i = deep << 2 | bottom << 1 | right) === (j = (zp >= zm) << 2 | (yp >= ym) << 1 | xp >= xm)); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { var d, i, n = data.length, x, y, z, xz = new Array(n), yz = new Array(n), zz = new Array(n), x0 = Infinity, y0 = Infinity, z0 = Infinity, x1 = -Infinity, y1 = -Infinity, z1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) continue; xz[i] = x; yz[i] = y; zz[i] = z; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; if (z < z0) z0 = z; if (z > z1) z1 = z; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1 || z0 > z1) return this; // Expand the tree to cover the new points. this.cover(x0, y0, z0).cover(x1, y1, z1); // Add the new points. for (i = 0; i < n; ++i) { add(this, xz[i], yz[i], zz[i], data[i]); } return this; } function tree_cover(x, y, z) { if (isNaN(x = +x) || isNaN(y = +y) || isNaN(z = +z)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, z0 = this._z0, x1 = this._x1, y1 = this._y1, z1 = this._z1; // If the octree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing octant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; z1 = (z0 = Math.floor(z)) + 1; } // Otherwise, double repeatedly to cover. else { var t = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1 || z0 > z || z >= z1) { i = (z < z0) << 2 | (y < y0) << 1 | x < x0; parent = new Array(8), parent[i] = node, node = parent, t *= 2; switch (i) { case 0: x1 = x0 + t, y1 = y0 + t, z1 = z0 + t; break; case 1: x0 = x1 - t, y1 = y0 + t, z1 = z0 + t; break; case 2: x1 = x0 + t, y0 = y1 - t, z1 = z0 + t; break; case 3: x0 = x1 - t, y0 = y1 - t, z1 = z0 + t; break; case 4: x1 = x0 + t, y1 = y0 + t, z0 = z1 - t; break; case 5: x0 = x1 - t, y1 = y0 + t, z0 = z1 - t; break; case 6: x1 = x0 + t, y0 = y1 - t, z0 = z1 - t; break; case 7: x0 = x1 - t, y0 = y1 - t, z0 = z1 - t; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._z0 = z0; this._x1 = x1; this._y1 = y1; this._z1 = z1; return this; } function tree_data() { var data = []; this.visit(function (node) { if (!node.length) do data.push(node.data); while (node = node.next); }); return data; } function tree_extent(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1], +_[0][2]).cover(+_[1][0], +_[1][1], +_[1][2]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0, this._z0], [this._x1, this._y1, this._z1]]; } function Octant(node, x0, y0, z0, x1, y1, z1) { this.node = node; this.x0 = x0; this.y0 = y0; this.z0 = z0; this.x1 = x1; this.y1 = y1; this.z1 = z1; } function tree_find(x, y, z, radius) { var data, x0 = this._x0, y0 = this._y0, z0 = this._z0, x1, y1, z1, x2, y2, z2, x3 = this._x1, y3 = this._y1, z3 = this._z1, octs = [], node = this._root, q, i; if (node) octs.push(new Octant(node, x0, y0, z0, x3, y3, z3)); if (radius == null) radius = Infinity;else { x0 = x - radius, y0 = y - radius, z0 = z - radius; x3 = x + radius, y3 = y + radius, z3 = z + radius; radius *= radius; } while (q = octs.pop()) { // Stop searching if this octant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (z1 = q.z0) > z3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0 || (z2 = q.z1) < z0) continue; // Bisect the current octant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2, zm = (z1 + z2) / 2; octs.push(new Octant(node[7], xm, ym, zm, x2, y2, z2), new Octant(node[6], x1, ym, zm, xm, y2, z2), new Octant(node[5], xm, y1, zm, x2, ym, z2), new Octant(node[4], x1, y1, zm, xm, ym, z2), new Octant(node[3], xm, ym, z1, x2, y2, zm), new Octant(node[2], x1, ym, z1, xm, y2, zm), new Octant(node[1], xm, y1, z1, x2, ym, zm), new Octant(node[0], x1, y1, z1, xm, ym, zm)); // Visit the closest octant first. if (i = (z >= zm) << 2 | (y >= ym) << 1 | x >= xm) { q = octs[octs.length - 1]; octs[octs.length - 1] = octs[octs.length - 1 - i]; octs[octs.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), dz = z - +this._z.call(null, node.data), d2 = dx * dx + dy * dy + dz * dz; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d, z0 = z - d; x3 = x + d, y3 = y + d, z3 = z + d; data = node.data; } } } return data; } function tree_remove(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, z0 = this._z0, x1 = this._x1, y1 = this._y1, z1 = this._z1, x, y, z, xm, ym, zm, right, bottom, deep, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm;else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym;else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm;else z1 = zm; if (!(parent = node, node = node[i = deep << 2 | bottom << 1 | right])) return this; if (!node.length) break; if (parent[i + 1 & 7] || parent[i + 2 & 7] || parent[i + 3 & 7] || parent[i + 4 & 7] || parent[i + 5 & 7] || parent[i + 6 & 7] || parent[i + 7 & 7]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return next ? previous.next = next : delete previous.next, this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3] || parent[4] || parent[5] || parent[6] || parent[7]) && node === (parent[7] || parent[6] || parent[5] || parent[4] || parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node;else this._root = node; } return this; } function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root() { return this._root; } function tree_size() { var size = 0; this.visit(function (node) { if (!node.length) do ++size; while (node = node.next); }); return size; } function tree_visit(callback) { var octs = [], q, node = this._root, child, x0, y0, z0, x1, y1, z1; if (node) octs.push(new Octant(node, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1)); while (q = octs.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2; if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1)); if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1)); if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1)); if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1)); if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm)); if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm)); if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm)); if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm)); } } return this; } function tree_visitAfter(callback) { var octs = [], next = [], q; if (this._root) octs.push(new Octant(this._root, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1)); while (q = octs.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2; if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm)); if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm)); if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm)); if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm)); if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1)); if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1)); if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1)); if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.z0, q.x1, q.y1, q.z1); } return this; } function defaultX(d) { return d[0]; } function tree_x(_) { return arguments.length ? (this._x = _, this) : this._x; } function defaultY(d) { return d[1]; } function tree_y(_) { return arguments.length ? (this._y = _, this) : this._y; } function defaultZ(d) { return d[2]; } function tree_z(_) { return arguments.length ? (this._z = _, this) : this._z; } function octree(nodes, x, y, z) { var tree = new Octree(x == null ? defaultX : x, y == null ? defaultY : y, z == null ? defaultZ : z, NaN, NaN, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Octree(x, y, z, x0, y0, z0, x1, y1, z1) { this._x = x; this._y = y; this._z = z; this._x0 = x0; this._y0 = y0; this._z0 = z0; this._x1 = x1; this._y1 = y1; this._z1 = z1; this._root = undefined; } function leaf_copy(leaf) { var copy = { data: leaf.data }, next = copy; while (leaf = leaf.next) next = next.next = { data: leaf.data }; return copy; } var treeProto = octree.prototype = Octree.prototype; treeProto.copy = function () { var copy = new Octree(this._x, this._y, this._z, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{ source: node, target: copy._root = new Array(8) }]; while (node = nodes.pop()) { for (var i = 0; i < 8; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({ source: child, target: node.target[i] = new Array(8) });else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; treeProto.y = tree_y; treeProto.z = tree_z; exports.octree = octree; Object.defineProperty(exports, '__esModule', { value: true }); }); /***/ }) }; ;