diff options
Diffstat (limited to 'web-build/static/media/bezier.799a5c8c.cjs')
-rw-r--r-- | web-build/static/media/bezier.799a5c8c.cjs | 1943 |
1 files changed, 0 insertions, 1943 deletions
diff --git a/web-build/static/media/bezier.799a5c8c.cjs b/web-build/static/media/bezier.799a5c8c.cjs deleted file mode 100644 index fe90607..0000000 --- a/web-build/static/media/bezier.799a5c8c.cjs +++ /dev/null @@ -1,1943 +0,0 @@ -"use strict"; - -Object.defineProperty(exports, "__esModule", { - value: true -}); -exports.Bezier = void 0; -// math-inlining. -const { - abs, - cos, - sin, - acos, - atan2, - sqrt, - pow -} = Math; // cube root function yielding real roots - -function crt(v) { - return v < 0 ? -pow(-v, 1 / 3) : pow(v, 1 / 3); -} // trig constants - - -const pi = Math.PI, - tau = 2 * pi, - quart = pi / 2, - // float precision significant decimal -epsilon = 0.000001, - // extremas used in bbox calculation and similar algorithms -nMax = Number.MAX_SAFE_INTEGER || 9007199254740991, - nMin = Number.MIN_SAFE_INTEGER || -9007199254740991, - // a zero coordinate, which is surprisingly useful -ZERO = { - x: 0, - y: 0, - z: 0 -}; // Bezier utility functions - -const utils = { - // Legendre-Gauss abscissae with n=24 (x_i values, defined at i=n as the roots of the nth order Legendre polynomial Pn(x)) - Tvalues: [-0.0640568928626056260850430826247450385909, 0.0640568928626056260850430826247450385909, -0.1911188674736163091586398207570696318404, 0.1911188674736163091586398207570696318404, -0.3150426796961633743867932913198102407864, 0.3150426796961633743867932913198102407864, -0.4337935076260451384870842319133497124524, 0.4337935076260451384870842319133497124524, -0.5454214713888395356583756172183723700107, 0.5454214713888395356583756172183723700107, -0.6480936519369755692524957869107476266696, 0.6480936519369755692524957869107476266696, -0.7401241915785543642438281030999784255232, 0.7401241915785543642438281030999784255232, -0.8200019859739029219539498726697452080761, 0.8200019859739029219539498726697452080761, -0.8864155270044010342131543419821967550873, 0.8864155270044010342131543419821967550873, -0.9382745520027327585236490017087214496548, 0.9382745520027327585236490017087214496548, -0.9747285559713094981983919930081690617411, 0.9747285559713094981983919930081690617411, -0.9951872199970213601799974097007368118745, 0.9951872199970213601799974097007368118745], - // Legendre-Gauss weights with n=24 (w_i values, defined by a function linked to in the Bezier primer article) - Cvalues: [0.1279381953467521569740561652246953718517, 0.1279381953467521569740561652246953718517, 0.1258374563468282961213753825111836887264, 0.1258374563468282961213753825111836887264, 0.121670472927803391204463153476262425607, 0.121670472927803391204463153476262425607, 0.1155056680537256013533444839067835598622, 0.1155056680537256013533444839067835598622, 0.1074442701159656347825773424466062227946, 0.1074442701159656347825773424466062227946, 0.0976186521041138882698806644642471544279, 0.0976186521041138882698806644642471544279, 0.086190161531953275917185202983742667185, 0.086190161531953275917185202983742667185, 0.0733464814110803057340336152531165181193, 0.0733464814110803057340336152531165181193, 0.0592985849154367807463677585001085845412, 0.0592985849154367807463677585001085845412, 0.0442774388174198061686027482113382288593, 0.0442774388174198061686027482113382288593, 0.0285313886289336631813078159518782864491, 0.0285313886289336631813078159518782864491, 0.0123412297999871995468056670700372915759, 0.0123412297999871995468056670700372915759], - arcfn: function (t, derivativeFn) { - const d = derivativeFn(t); - let l = d.x * d.x + d.y * d.y; - - if (typeof d.z !== "undefined") { - l += d.z * d.z; - } - - return sqrt(l); - }, - compute: function (t, points, _3d) { - // shortcuts - if (t === 0) { - points[0].t = 0; - return points[0]; - } - - const order = points.length - 1; - - if (t === 1) { - points[order].t = 1; - return points[order]; - } - - const mt = 1 - t; - let p = points; // constant? - - if (order === 0) { - points[0].t = t; - return points[0]; - } // linear? - - - if (order === 1) { - const ret = { - x: mt * p[0].x + t * p[1].x, - y: mt * p[0].y + t * p[1].y, - t: t - }; - - if (_3d) { - ret.z = mt * p[0].z + t * p[1].z; - } - - return ret; - } // quadratic/cubic curve? - - - if (order < 4) { - let mt2 = mt * mt, - t2 = t * t, - a, - b, - c, - d = 0; - - if (order === 2) { - p = [p[0], p[1], p[2], ZERO]; - a = mt2; - b = mt * t * 2; - c = t2; - } else if (order === 3) { - a = mt2 * mt; - b = mt2 * t * 3; - c = mt * t2 * 3; - d = t * t2; - } - - const ret = { - x: a * p[0].x + b * p[1].x + c * p[2].x + d * p[3].x, - y: a * p[0].y + b * p[1].y + c * p[2].y + d * p[3].y, - t: t - }; - - if (_3d) { - ret.z = a * p[0].z + b * p[1].z + c * p[2].z + d * p[3].z; - } - - return ret; - } // higher order curves: use de Casteljau's computation - - - const dCpts = JSON.parse(JSON.stringify(points)); - - while (dCpts.length > 1) { - for (let i = 0; i < dCpts.length - 1; i++) { - dCpts[i] = { - x: dCpts[i].x + (dCpts[i + 1].x - dCpts[i].x) * t, - y: dCpts[i].y + (dCpts[i + 1].y - dCpts[i].y) * t - }; - - if (typeof dCpts[i].z !== "undefined") { - dCpts[i] = dCpts[i].z + (dCpts[i + 1].z - dCpts[i].z) * t; - } - } - - dCpts.splice(dCpts.length - 1, 1); - } - - dCpts[0].t = t; - return dCpts[0]; - }, - computeWithRatios: function (t, points, ratios, _3d) { - const mt = 1 - t, - r = ratios, - p = points; - let f1 = r[0], - f2 = r[1], - f3 = r[2], - f4 = r[3], - d; // spec for linear - - f1 *= mt; - f2 *= t; - - if (p.length === 2) { - d = f1 + f2; - return { - x: (f1 * p[0].x + f2 * p[1].x) / d, - y: (f1 * p[0].y + f2 * p[1].y) / d, - z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z) / d, - t: t - }; - } // upgrade to quadratic - - - f1 *= mt; - f2 *= 2 * mt; - f3 *= t * t; - - if (p.length === 3) { - d = f1 + f2 + f3; - return { - x: (f1 * p[0].x + f2 * p[1].x + f3 * p[2].x) / d, - y: (f1 * p[0].y + f2 * p[1].y + f3 * p[2].y) / d, - z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z + f3 * p[2].z) / d, - t: t - }; - } // upgrade to cubic - - - f1 *= mt; - f2 *= 1.5 * mt; - f3 *= 3 * mt; - f4 *= t * t * t; - - if (p.length === 4) { - d = f1 + f2 + f3 + f4; - return { - x: (f1 * p[0].x + f2 * p[1].x + f3 * p[2].x + f4 * p[3].x) / d, - y: (f1 * p[0].y + f2 * p[1].y + f3 * p[2].y + f4 * p[3].y) / d, - z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z + f3 * p[2].z + f4 * p[3].z) / d, - t: t - }; - } - }, - derive: function (points, _3d) { - const dpoints = []; - - for (let p = points, d = p.length, c = d - 1; d > 1; d--, c--) { - const list = []; - - for (let j = 0, dpt; j < c; j++) { - dpt = { - x: c * (p[j + 1].x - p[j].x), - y: c * (p[j + 1].y - p[j].y) - }; - - if (_3d) { - dpt.z = c * (p[j + 1].z - p[j].z); - } - - list.push(dpt); - } - - dpoints.push(list); - p = list; - } - - return dpoints; - }, - between: function (v, m, M) { - return m <= v && v <= M || utils.approximately(v, m) || utils.approximately(v, M); - }, - approximately: function (a, b, precision) { - return abs(a - b) <= (precision || epsilon); - }, - length: function (derivativeFn) { - const z = 0.5, - len = utils.Tvalues.length; - let sum = 0; - - for (let i = 0, t; i < len; i++) { - t = z * utils.Tvalues[i] + z; - sum += utils.Cvalues[i] * utils.arcfn(t, derivativeFn); - } - - return z * sum; - }, - map: function (v, ds, de, ts, te) { - const d1 = de - ds, - d2 = te - ts, - v2 = v - ds, - r = v2 / d1; - return ts + d2 * r; - }, - lerp: function (r, v1, v2) { - const ret = { - x: v1.x + r * (v2.x - v1.x), - y: v1.y + r * (v2.y - v1.y) - }; - - if (!!v1.z && !!v2.z) { - ret.z = v1.z + r * (v2.z - v1.z); - } - - return ret; - }, - pointToString: function (p) { - let s = p.x + "/" + p.y; - - if (typeof p.z !== "undefined") { - s += "/" + p.z; - } - - return s; - }, - pointsToString: function (points) { - return "[" + points.map(utils.pointToString).join(", ") + "]"; - }, - copy: function (obj) { - return JSON.parse(JSON.stringify(obj)); - }, - angle: function (o, v1, v2) { - const dx1 = v1.x - o.x, - dy1 = v1.y - o.y, - dx2 = v2.x - o.x, - dy2 = v2.y - o.y, - cross = dx1 * dy2 - dy1 * dx2, - dot = dx1 * dx2 + dy1 * dy2; - return atan2(cross, dot); - }, - // round as string, to avoid rounding errors - round: function (v, d) { - const s = "" + v; - const pos = s.indexOf("."); - return parseFloat(s.substring(0, pos + 1 + d)); - }, - dist: function (p1, p2) { - const dx = p1.x - p2.x, - dy = p1.y - p2.y; - return sqrt(dx * dx + dy * dy); - }, - closest: function (LUT, point) { - let mdist = pow(2, 63), - mpos, - d; - LUT.forEach(function (p, idx) { - d = utils.dist(point, p); - - if (d < mdist) { - mdist = d; - mpos = idx; - } - }); - return { - mdist: mdist, - mpos: mpos - }; - }, - abcratio: function (t, n) { - // see ratio(t) note on http://pomax.github.io/bezierinfo/#abc - if (n !== 2 && n !== 3) { - return false; - } - - if (typeof t === "undefined") { - t = 0.5; - } else if (t === 0 || t === 1) { - return t; - } - - const bottom = pow(t, n) + pow(1 - t, n), - top = bottom - 1; - return abs(top / bottom); - }, - projectionratio: function (t, n) { - // see u(t) note on http://pomax.github.io/bezierinfo/#abc - if (n !== 2 && n !== 3) { - return false; - } - - if (typeof t === "undefined") { - t = 0.5; - } else if (t === 0 || t === 1) { - return t; - } - - const top = pow(1 - t, n), - bottom = pow(t, n) + top; - return top / bottom; - }, - lli8: function (x1, y1, x2, y2, x3, y3, x4, y4) { - const nx = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4), - ny = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4), - d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); - - if (d == 0) { - return false; - } - - return { - x: nx / d, - y: ny / d - }; - }, - lli4: function (p1, p2, p3, p4) { - const x1 = p1.x, - y1 = p1.y, - x2 = p2.x, - y2 = p2.y, - x3 = p3.x, - y3 = p3.y, - x4 = p4.x, - y4 = p4.y; - return utils.lli8(x1, y1, x2, y2, x3, y3, x4, y4); - }, - lli: function (v1, v2) { - return utils.lli4(v1, v1.c, v2, v2.c); - }, - makeline: function (p1, p2) { - const x1 = p1.x, - y1 = p1.y, - x2 = p2.x, - y2 = p2.y, - dx = (x2 - x1) / 3, - dy = (y2 - y1) / 3; - return new Bezier(x1, y1, x1 + dx, y1 + dy, x1 + 2 * dx, y1 + 2 * dy, x2, y2); - }, - findbbox: function (sections) { - let mx = nMax, - my = nMax, - MX = nMin, - MY = nMin; - sections.forEach(function (s) { - const bbox = s.bbox(); - if (mx > bbox.x.min) mx = bbox.x.min; - if (my > bbox.y.min) my = bbox.y.min; - if (MX < bbox.x.max) MX = bbox.x.max; - if (MY < bbox.y.max) MY = bbox.y.max; - }); - return { - x: { - min: mx, - mid: (mx + MX) / 2, - max: MX, - size: MX - mx - }, - y: { - min: my, - mid: (my + MY) / 2, - max: MY, - size: MY - my - } - }; - }, - shapeintersections: function (s1, bbox1, s2, bbox2, curveIntersectionThreshold) { - if (!utils.bboxoverlap(bbox1, bbox2)) return []; - const intersections = []; - const a1 = [s1.startcap, s1.forward, s1.back, s1.endcap]; - const a2 = [s2.startcap, s2.forward, s2.back, s2.endcap]; - a1.forEach(function (l1) { - if (l1.virtual) return; - a2.forEach(function (l2) { - if (l2.virtual) return; - const iss = l1.intersects(l2, curveIntersectionThreshold); - - if (iss.length > 0) { - iss.c1 = l1; - iss.c2 = l2; - iss.s1 = s1; - iss.s2 = s2; - intersections.push(iss); - } - }); - }); - return intersections; - }, - makeshape: function (forward, back, curveIntersectionThreshold) { - const bpl = back.points.length; - const fpl = forward.points.length; - const start = utils.makeline(back.points[bpl - 1], forward.points[0]); - const end = utils.makeline(forward.points[fpl - 1], back.points[0]); - const shape = { - startcap: start, - forward: forward, - back: back, - endcap: end, - bbox: utils.findbbox([start, forward, back, end]) - }; - - shape.intersections = function (s2) { - return utils.shapeintersections(shape, shape.bbox, s2, s2.bbox, curveIntersectionThreshold); - }; - - return shape; - }, - getminmax: function (curve, d, list) { - if (!list) return { - min: 0, - max: 0 - }; - let min = nMax, - max = nMin, - t, - c; - - if (list.indexOf(0) === -1) { - list = [0].concat(list); - } - - if (list.indexOf(1) === -1) { - list.push(1); - } - - for (let i = 0, len = list.length; i < len; i++) { - t = list[i]; - c = curve.get(t); - - if (c[d] < min) { - min = c[d]; - } - - if (c[d] > max) { - max = c[d]; - } - } - - return { - min: min, - mid: (min + max) / 2, - max: max, - size: max - min - }; - }, - align: function (points, line) { - const tx = line.p1.x, - ty = line.p1.y, - a = -atan2(line.p2.y - ty, line.p2.x - tx), - d = function (v) { - return { - x: (v.x - tx) * cos(a) - (v.y - ty) * sin(a), - y: (v.x - tx) * sin(a) + (v.y - ty) * cos(a) - }; - }; - - return points.map(d); - }, - roots: function (points, line) { - line = line || { - p1: { - x: 0, - y: 0 - }, - p2: { - x: 1, - y: 0 - } - }; - const order = points.length - 1; - const aligned = utils.align(points, line); - - const reduce = function (t) { - return 0 <= t && t <= 1; - }; - - if (order === 2) { - const a = aligned[0].y, - b = aligned[1].y, - c = aligned[2].y, - d = a - 2 * b + c; - - if (d !== 0) { - const m1 = -sqrt(b * b - a * c), - m2 = -a + b, - v1 = -(m1 + m2) / d, - v2 = -(-m1 + m2) / d; - return [v1, v2].filter(reduce); - } else if (b !== c && d === 0) { - return [(2 * b - c) / (2 * b - 2 * c)].filter(reduce); - } - - return []; - } // see http://www.trans4mind.com/personal_development/mathematics/polynomials/cubicAlgebra.htm - - - const pa = aligned[0].y, - pb = aligned[1].y, - pc = aligned[2].y, - pd = aligned[3].y; - let d = -pa + 3 * pb - 3 * pc + pd, - a = 3 * pa - 6 * pb + 3 * pc, - b = -3 * pa + 3 * pb, - c = pa; - - if (utils.approximately(d, 0)) { - // this is not a cubic curve. - if (utils.approximately(a, 0)) { - // in fact, this is not a quadratic curve either. - if (utils.approximately(b, 0)) { - // in fact in fact, there are no solutions. - return []; - } // linear solution: - - - return [-c / b].filter(reduce); - } // quadratic solution: - - - const q = sqrt(b * b - 4 * a * c), - a2 = 2 * a; - return [(q - b) / a2, (-b - q) / a2].filter(reduce); - } // at this point, we know we need a cubic solution: - - - a /= d; - b /= d; - c /= d; - const p = (3 * b - a * a) / 3, - p3 = p / 3, - q = (2 * a * a * a - 9 * a * b + 27 * c) / 27, - q2 = q / 2, - discriminant = q2 * q2 + p3 * p3 * p3; - let u1, v1, x1, x2, x3; - - if (discriminant < 0) { - const mp3 = -p / 3, - mp33 = mp3 * mp3 * mp3, - r = sqrt(mp33), - t = -q / (2 * r), - cosphi = t < -1 ? -1 : t > 1 ? 1 : t, - phi = acos(cosphi), - crtr = crt(r), - t1 = 2 * crtr; - x1 = t1 * cos(phi / 3) - a / 3; - x2 = t1 * cos((phi + tau) / 3) - a / 3; - x3 = t1 * cos((phi + 2 * tau) / 3) - a / 3; - return [x1, x2, x3].filter(reduce); - } else if (discriminant === 0) { - u1 = q2 < 0 ? crt(-q2) : -crt(q2); - x1 = 2 * u1 - a / 3; - x2 = -u1 - a / 3; - return [x1, x2].filter(reduce); - } else { - const sd = sqrt(discriminant); - u1 = crt(-q2 + sd); - v1 = crt(q2 + sd); - return [u1 - v1 - a / 3].filter(reduce); - } - }, - droots: function (p) { - // quadratic roots are easy - if (p.length === 3) { - const a = p[0], - b = p[1], - c = p[2], - d = a - 2 * b + c; - - if (d !== 0) { - const m1 = -sqrt(b * b - a * c), - m2 = -a + b, - v1 = -(m1 + m2) / d, - v2 = -(-m1 + m2) / d; - return [v1, v2]; - } else if (b !== c && d === 0) { - return [(2 * b - c) / (2 * (b - c))]; - } - - return []; - } // linear roots are even easier - - - if (p.length === 2) { - const a = p[0], - b = p[1]; - - if (a !== b) { - return [a / (a - b)]; - } - - return []; - } - - return []; - }, - curvature: function (t, d1, d2, _3d, kOnly) { - let num, - dnm, - adk, - dk, - k = 0, - r = 0; // - // We're using the following formula for curvature: - // - // x'y" - y'x" - // k(t) = ------------------ - // (x'² + y'²)^(3/2) - // - // from https://en.wikipedia.org/wiki/Radius_of_curvature#Definition - // - // With it corresponding 3D counterpart: - // - // sqrt( (y'z" - y"z')² + (z'x" - z"x')² + (x'y" - x"y')²) - // k(t) = ------------------------------------------------------- - // (x'² + y'² + z'²)^(3/2) - // - - const d = utils.compute(t, d1); - const dd = utils.compute(t, d2); - const qdsum = d.x * d.x + d.y * d.y; - - if (_3d) { - num = sqrt(pow(d.y * dd.z - dd.y * d.z, 2) + pow(d.z * dd.x - dd.z * d.x, 2) + pow(d.x * dd.y - dd.x * d.y, 2)); - dnm = pow(qdsum + d.z * d.z, 3 / 2); - } else { - num = d.x * dd.y - d.y * dd.x; - dnm = pow(qdsum, 3 / 2); - } - - if (num === 0 || dnm === 0) { - return { - k: 0, - r: 0 - }; - } - - k = num / dnm; - r = dnm / num; // We're also computing the derivative of kappa, because - // there is value in knowing the rate of change for the - // curvature along the curve. And we're just going to - // ballpark it based on an epsilon. - - if (!kOnly) { - // compute k'(t) based on the interval before, and after it, - // to at least try to not introduce forward/backward pass bias. - const pk = utils.curvature(t - 0.001, d1, d2, _3d, true).k; - const nk = utils.curvature(t + 0.001, d1, d2, _3d, true).k; - dk = (nk - k + (k - pk)) / 2; - adk = (abs(nk - k) + abs(k - pk)) / 2; - } - - return { - k: k, - r: r, - dk: dk, - adk: adk - }; - }, - inflections: function (points) { - if (points.length < 4) return []; // FIXME: TODO: add in inflection abstraction for quartic+ curves? - - const p = utils.align(points, { - p1: points[0], - p2: points.slice(-1)[0] - }), - a = p[2].x * p[1].y, - b = p[3].x * p[1].y, - c = p[1].x * p[2].y, - d = p[3].x * p[2].y, - v1 = 18 * (-3 * a + 2 * b + 3 * c - d), - v2 = 18 * (3 * a - b - 3 * c), - v3 = 18 * (c - a); - - if (utils.approximately(v1, 0)) { - if (!utils.approximately(v2, 0)) { - let t = -v3 / v2; - if (0 <= t && t <= 1) return [t]; - } - - return []; - } - - const trm = v2 * v2 - 4 * v1 * v3, - sq = Math.sqrt(trm), - d2 = 2 * v1; - if (utils.approximately(d2, 0)) return []; - return [(sq - v2) / d2, -(v2 + sq) / d2].filter(function (r) { - return 0 <= r && r <= 1; - }); - }, - bboxoverlap: function (b1, b2) { - const dims = ["x", "y"], - len = dims.length; - - for (let i = 0, dim, l, t, d; i < len; i++) { - dim = dims[i]; - l = b1[dim].mid; - t = b2[dim].mid; - d = (b1[dim].size + b2[dim].size) / 2; - if (abs(l - t) >= d) return false; - } - - return true; - }, - expandbox: function (bbox, _bbox) { - if (_bbox.x.min < bbox.x.min) { - bbox.x.min = _bbox.x.min; - } - - if (_bbox.y.min < bbox.y.min) { - bbox.y.min = _bbox.y.min; - } - - if (_bbox.z && _bbox.z.min < bbox.z.min) { - bbox.z.min = _bbox.z.min; - } - - if (_bbox.x.max > bbox.x.max) { - bbox.x.max = _bbox.x.max; - } - - if (_bbox.y.max > bbox.y.max) { - bbox.y.max = _bbox.y.max; - } - - if (_bbox.z && _bbox.z.max > bbox.z.max) { - bbox.z.max = _bbox.z.max; - } - - bbox.x.mid = (bbox.x.min + bbox.x.max) / 2; - bbox.y.mid = (bbox.y.min + bbox.y.max) / 2; - - if (bbox.z) { - bbox.z.mid = (bbox.z.min + bbox.z.max) / 2; - } - - bbox.x.size = bbox.x.max - bbox.x.min; - bbox.y.size = bbox.y.max - bbox.y.min; - - if (bbox.z) { - bbox.z.size = bbox.z.max - bbox.z.min; - } - }, - pairiteration: function (c1, c2, curveIntersectionThreshold) { - const c1b = c1.bbox(), - c2b = c2.bbox(), - r = 100000, - threshold = curveIntersectionThreshold || 0.5; - - if (c1b.x.size + c1b.y.size < threshold && c2b.x.size + c2b.y.size < threshold) { - return [(r * (c1._t1 + c1._t2) / 2 | 0) / r + "/" + (r * (c2._t1 + c2._t2) / 2 | 0) / r]; - } - - let cc1 = c1.split(0.5), - cc2 = c2.split(0.5), - pairs = [{ - left: cc1.left, - right: cc2.left - }, { - left: cc1.left, - right: cc2.right - }, { - left: cc1.right, - right: cc2.right - }, { - left: cc1.right, - right: cc2.left - }]; - pairs = pairs.filter(function (pair) { - return utils.bboxoverlap(pair.left.bbox(), pair.right.bbox()); - }); - let results = []; - if (pairs.length === 0) return results; - pairs.forEach(function (pair) { - results = results.concat(utils.pairiteration(pair.left, pair.right, threshold)); - }); - results = results.filter(function (v, i) { - return results.indexOf(v) === i; - }); - return results; - }, - getccenter: function (p1, p2, p3) { - const dx1 = p2.x - p1.x, - dy1 = p2.y - p1.y, - dx2 = p3.x - p2.x, - dy2 = p3.y - p2.y, - dx1p = dx1 * cos(quart) - dy1 * sin(quart), - dy1p = dx1 * sin(quart) + dy1 * cos(quart), - dx2p = dx2 * cos(quart) - dy2 * sin(quart), - dy2p = dx2 * sin(quart) + dy2 * cos(quart), - // chord midpoints - mx1 = (p1.x + p2.x) / 2, - my1 = (p1.y + p2.y) / 2, - mx2 = (p2.x + p3.x) / 2, - my2 = (p2.y + p3.y) / 2, - // midpoint offsets - mx1n = mx1 + dx1p, - my1n = my1 + dy1p, - mx2n = mx2 + dx2p, - my2n = my2 + dy2p, - // intersection of these lines: - arc = utils.lli8(mx1, my1, mx1n, my1n, mx2, my2, mx2n, my2n), - r = utils.dist(arc, p1); // arc start/end values, over mid point: - - let s = atan2(p1.y - arc.y, p1.x - arc.x), - m = atan2(p2.y - arc.y, p2.x - arc.x), - e = atan2(p3.y - arc.y, p3.x - arc.x), - _; // determine arc direction (cw/ccw correction) - - - if (s < e) { - // if s<m<e, arc(s, e) - // if m<s<e, arc(e, s + tau) - // if s<e<m, arc(e, s + tau) - if (s > m || m > e) { - s += tau; - } - - if (s > e) { - _ = e; - e = s; - s = _; - } - } else { - // if e<m<s, arc(e, s) - // if m<e<s, arc(s, e + tau) - // if e<s<m, arc(s, e + tau) - if (e < m && m < s) { - _ = e; - e = s; - s = _; - } else { - e += tau; - } - } // assign and done. - - - arc.s = s; - arc.e = e; - arc.r = r; - return arc; - }, - numberSort: function (a, b) { - return a - b; - } -}; -/** - * Poly Bezier - * @param {[type]} curves [description] - */ - -class PolyBezier { - constructor(curves) { - this.curves = []; - this._3d = false; - - if (!!curves) { - this.curves = curves; - this._3d = this.curves[0]._3d; - } - } - - valueOf() { - return this.toString(); - } - - toString() { - return "[" + this.curves.map(function (curve) { - return utils.pointsToString(curve.points); - }).join(", ") + "]"; - } - - addCurve(curve) { - this.curves.push(curve); - this._3d = this._3d || curve._3d; - } - - length() { - return this.curves.map(function (v) { - return v.length(); - }).reduce(function (a, b) { - return a + b; - }); - } - - curve(idx) { - return this.curves[idx]; - } - - bbox() { - const c = this.curves; - var bbox = c[0].bbox(); - - for (var i = 1; i < c.length; i++) { - utils.expandbox(bbox, c[i].bbox()); - } - - return bbox; - } - - offset(d) { - const offset = []; - this.curves.forEach(function (v) { - offset.push(...v.offset(d)); - }); - return new PolyBezier(offset); - } - -} -/** - A javascript Bezier curve library by Pomax. - - Based on http://pomax.github.io/bezierinfo - - This code is MIT licensed. -**/ -// math-inlining. - - -const { - abs: abs$1, - min, - max, - cos: cos$1, - sin: sin$1, - acos: acos$1, - sqrt: sqrt$1 -} = Math; -const pi$1 = Math.PI; -/** - * Bezier curve constructor. - * - * ...docs pending... - */ - -class Bezier { - constructor(coords) { - let args = coords && coords.forEach ? coords : Array.from(arguments).slice(); - let coordlen = false; - - if (typeof args[0] === "object") { - coordlen = args.length; - const newargs = []; - args.forEach(function (point) { - ["x", "y", "z"].forEach(function (d) { - if (typeof point[d] !== "undefined") { - newargs.push(point[d]); - } - }); - }); - args = newargs; - } - - let higher = false; - const len = args.length; - - if (coordlen) { - if (coordlen > 4) { - if (arguments.length !== 1) { - throw new Error("Only new Bezier(point[]) is accepted for 4th and higher order curves"); - } - - higher = true; - } - } else { - if (len !== 6 && len !== 8 && len !== 9 && len !== 12) { - if (arguments.length !== 1) { - throw new Error("Only new Bezier(point[]) is accepted for 4th and higher order curves"); - } - } - } - - const _3d = this._3d = !higher && (len === 9 || len === 12) || coords && coords[0] && typeof coords[0].z !== "undefined"; - - const points = this.points = []; - - for (let idx = 0, step = _3d ? 3 : 2; idx < len; idx += step) { - var point = { - x: args[idx], - y: args[idx + 1] - }; - - if (_3d) { - point.z = args[idx + 2]; - } - - points.push(point); - } - - const order = this.order = points.length - 1; - const dims = this.dims = ["x", "y"]; - if (_3d) dims.push("z"); - this.dimlen = dims.length; - const aligned = utils.align(points, { - p1: points[0], - p2: points[order] - }); - this._linear = !aligned.some(p => abs$1(p.y) > 0.0001); - this._lut = []; - this._t1 = 0; - this._t2 = 1; - this.update(); - } - - static quadraticFromPoints(p1, p2, p3, t) { - if (typeof t === "undefined") { - t = 0.5; - } // shortcuts, although they're really dumb - - - if (t === 0) { - return new Bezier(p2, p2, p3); - } - - if (t === 1) { - return new Bezier(p1, p2, p2); - } // real fitting. - - - const abc = Bezier.getABC(2, p1, p2, p3, t); - return new Bezier(p1, abc.A, p3); - } - - static cubicFromPoints(S, B, E, t, d1) { - if (typeof t === "undefined") { - t = 0.5; - } - - const abc = Bezier.getABC(3, S, B, E, t); - - if (typeof d1 === "undefined") { - d1 = utils.dist(B, abc.C); - } - - const d2 = d1 * (1 - t) / t; - const selen = utils.dist(S, E), - lx = (E.x - S.x) / selen, - ly = (E.y - S.y) / selen, - bx1 = d1 * lx, - by1 = d1 * ly, - bx2 = d2 * lx, - by2 = d2 * ly; // derivation of new hull coordinates - - const e1 = { - x: B.x - bx1, - y: B.y - by1 - }, - e2 = { - x: B.x + bx2, - y: B.y + by2 - }, - A = abc.A, - v1 = { - x: A.x + (e1.x - A.x) / (1 - t), - y: A.y + (e1.y - A.y) / (1 - t) - }, - v2 = { - x: A.x + (e2.x - A.x) / t, - y: A.y + (e2.y - A.y) / t - }, - nc1 = { - x: S.x + (v1.x - S.x) / t, - y: S.y + (v1.y - S.y) / t - }, - nc2 = { - x: E.x + (v2.x - E.x) / (1 - t), - y: E.y + (v2.y - E.y) / (1 - t) - }; // ...done - - return new Bezier(S, nc1, nc2, E); - } - - static getUtils() { - return utils; - } - - getUtils() { - return Bezier.getUtils(); - } - - static get PolyBezier() { - return PolyBezier; - } - - valueOf() { - return this.toString(); - } - - toString() { - return utils.pointsToString(this.points); - } - - toSVG() { - if (this._3d) return false; - const p = this.points, - x = p[0].x, - y = p[0].y, - s = ["M", x, y, this.order === 2 ? "Q" : "C"]; - - for (let i = 1, last = p.length; i < last; i++) { - s.push(p[i].x); - s.push(p[i].y); - } - - return s.join(" "); - } - - setRatios(ratios) { - if (ratios.length !== this.points.length) { - throw new Error("incorrect number of ratio values"); - } - - this.ratios = ratios; - this._lut = []; // invalidate any precomputed LUT - } - - verify() { - const print = this.coordDigest(); - - if (print !== this._print) { - this._print = print; - this.update(); - } - } - - coordDigest() { - return this.points.map(function (c, pos) { - return "" + pos + c.x + c.y + (c.z ? c.z : 0); - }).join(""); - } - - update() { - // invalidate any precomputed LUT - this._lut = []; - this.dpoints = utils.derive(this.points, this._3d); - this.computedirection(); - } - - computedirection() { - const points = this.points; - const angle = utils.angle(points[0], points[this.order], points[1]); - this.clockwise = angle > 0; - } - - length() { - return utils.length(this.derivative.bind(this)); - } - - static getABC(order = 2, S, B, E, t = 0.5) { - const u = utils.projectionratio(t, order), - um = 1 - u, - C = { - x: u * S.x + um * E.x, - y: u * S.y + um * E.y - }, - s = utils.abcratio(t, order), - A = { - x: B.x + (B.x - C.x) / s, - y: B.y + (B.y - C.y) / s - }; - return { - A, - B, - C, - S, - E - }; - } - - getABC(t, B) { - B = B || this.get(t); - let S = this.points[0]; - let E = this.points[this.order]; - return Bezier.getABC(this.order, S, B, E, t); - } - - getLUT(steps) { - this.verify(); - steps = steps || 100; - - if (this._lut.length === steps) { - return this._lut; - } - - this._lut = []; // We want a range from 0 to 1 inclusive, so - // we decrement and then use <= rather than <: - - steps--; - - for (let i = 0, p, t; i < steps; i++) { - t = i / (steps - 1); - p = this.compute(t); - p.t = t; - - this._lut.push(p); - } - - return this._lut; - } - - on(point, error) { - error = error || 5; - const lut = this.getLUT(), - hits = []; - - for (let i = 0, c, t = 0; i < lut.length; i++) { - c = lut[i]; - - if (utils.dist(c, point) < error) { - hits.push(c); - t += i / lut.length; - } - } - - if (!hits.length) return false; - return t /= hits.length; - } - - project(point) { - // step 1: coarse check - const LUT = this.getLUT(), - l = LUT.length - 1, - closest = utils.closest(LUT, point), - mpos = closest.mpos, - t1 = (mpos - 1) / l, - t2 = (mpos + 1) / l, - step = 0.1 / l; // step 2: fine check - - let mdist = closest.mdist, - t = t1, - ft = t, - p; - mdist += 1; - - for (let d; t < t2 + step; t += step) { - p = this.compute(t); - d = utils.dist(point, p); - - if (d < mdist) { - mdist = d; - ft = t; - } - } - - ft = ft < 0 ? 0 : ft > 1 ? 1 : ft; - p = this.compute(ft); - p.t = ft; - p.d = mdist; - return p; - } - - get(t) { - return this.compute(t); - } - - point(idx) { - return this.points[idx]; - } - - compute(t) { - if (this.ratios) { - return utils.computeWithRatios(t, this.points, this.ratios, this._3d); - } - - return utils.compute(t, this.points, this._3d, this.ratios); - } - - raise() { - const p = this.points, - np = [p[0]], - k = p.length; - - for (let i = 1, pi, pim; i < k; i++) { - pi = p[i]; - pim = p[i - 1]; - np[i] = { - x: (k - i) / k * pi.x + i / k * pim.x, - y: (k - i) / k * pi.y + i / k * pim.y - }; - } - - np[k] = p[k - 1]; - return new Bezier(np); - } - - derivative(t) { - return utils.compute(t, this.dpoints[0]); - } - - dderivative(t) { - return utils.compute(t, this.dpoints[1]); - } - - align() { - let p = this.points; - return new Bezier(utils.align(p, { - p1: p[0], - p2: p[p.length - 1] - })); - } - - curvature(t) { - return utils.curvature(t, this.dpoints[0], this.dpoints[1], this._3d); - } - - inflections() { - return utils.inflections(this.points); - } - - normal(t) { - return this._3d ? this.__normal3(t) : this.__normal2(t); - } - - __normal2(t) { - const d = this.derivative(t); - const q = sqrt$1(d.x * d.x + d.y * d.y); - return { - x: -d.y / q, - y: d.x / q - }; - } - - __normal3(t) { - // see http://stackoverflow.com/questions/25453159 - const r1 = this.derivative(t), - r2 = this.derivative(t + 0.01), - q1 = sqrt$1(r1.x * r1.x + r1.y * r1.y + r1.z * r1.z), - q2 = sqrt$1(r2.x * r2.x + r2.y * r2.y + r2.z * r2.z); - r1.x /= q1; - r1.y /= q1; - r1.z /= q1; - r2.x /= q2; - r2.y /= q2; - r2.z /= q2; // cross product - - const c = { - x: r2.y * r1.z - r2.z * r1.y, - y: r2.z * r1.x - r2.x * r1.z, - z: r2.x * r1.y - r2.y * r1.x - }; - const m = sqrt$1(c.x * c.x + c.y * c.y + c.z * c.z); - c.x /= m; - c.y /= m; - c.z /= m; // rotation matrix - - const R = [c.x * c.x, c.x * c.y - c.z, c.x * c.z + c.y, c.x * c.y + c.z, c.y * c.y, c.y * c.z - c.x, c.x * c.z - c.y, c.y * c.z + c.x, c.z * c.z]; // normal vector: - - const n = { - x: R[0] * r1.x + R[1] * r1.y + R[2] * r1.z, - y: R[3] * r1.x + R[4] * r1.y + R[5] * r1.z, - z: R[6] * r1.x + R[7] * r1.y + R[8] * r1.z - }; - return n; - } - - hull(t) { - let p = this.points, - _p = [], - q = [], - idx = 0; - q[idx++] = p[0]; - q[idx++] = p[1]; - q[idx++] = p[2]; - - if (this.order === 3) { - q[idx++] = p[3]; - } // we lerp between all points at each iteration, until we have 1 point left. - - - while (p.length > 1) { - _p = []; - - for (let i = 0, pt, l = p.length - 1; i < l; i++) { - pt = utils.lerp(t, p[i], p[i + 1]); - q[idx++] = pt; - - _p.push(pt); - } - - p = _p; - } - - return q; - } - - split(t1, t2) { - // shortcuts - if (t1 === 0 && !!t2) { - return this.split(t2).left; - } - - if (t2 === 1) { - return this.split(t1).right; - } // no shortcut: use "de Casteljau" iteration. - - - const q = this.hull(t1); - const result = { - left: this.order === 2 ? new Bezier([q[0], q[3], q[5]]) : new Bezier([q[0], q[4], q[7], q[9]]), - right: this.order === 2 ? new Bezier([q[5], q[4], q[2]]) : new Bezier([q[9], q[8], q[6], q[3]]), - span: q - }; // make sure we bind _t1/_t2 information! - - result.left._t1 = utils.map(0, 0, 1, this._t1, this._t2); - result.left._t2 = utils.map(t1, 0, 1, this._t1, this._t2); - result.right._t1 = utils.map(t1, 0, 1, this._t1, this._t2); - result.right._t2 = utils.map(1, 0, 1, this._t1, this._t2); // if we have no t2, we're done - - if (!t2) { - return result; - } // if we have a t2, split again: - - - t2 = utils.map(t2, t1, 1, 0, 1); - return result.right.split(t2).left; - } - - extrema() { - const result = {}; - let roots = []; - this.dims.forEach(function (dim) { - let mfn = function (v) { - return v[dim]; - }; - - let p = this.dpoints[0].map(mfn); - result[dim] = utils.droots(p); - - if (this.order === 3) { - p = this.dpoints[1].map(mfn); - result[dim] = result[dim].concat(utils.droots(p)); - } - - result[dim] = result[dim].filter(function (t) { - return t >= 0 && t <= 1; - }); - roots = roots.concat(result[dim].sort(utils.numberSort)); - }.bind(this)); - result.values = roots.sort(utils.numberSort).filter(function (v, idx) { - return roots.indexOf(v) === idx; - }); - return result; - } - - bbox() { - const extrema = this.extrema(), - result = {}; - this.dims.forEach(function (d) { - result[d] = utils.getminmax(this, d, extrema[d]); - }.bind(this)); - return result; - } - - overlaps(curve) { - const lbbox = this.bbox(), - tbbox = curve.bbox(); - return utils.bboxoverlap(lbbox, tbbox); - } - - offset(t, d) { - if (typeof d !== "undefined") { - const c = this.get(t), - n = this.normal(t); - const ret = { - c: c, - n: n, - x: c.x + n.x * d, - y: c.y + n.y * d - }; - - if (this._3d) { - ret.z = c.z + n.z * d; - } - - return ret; - } - - if (this._linear) { - const nv = this.normal(0), - coords = this.points.map(function (p) { - const ret = { - x: p.x + t * nv.x, - y: p.y + t * nv.y - }; - - if (p.z && nv.z) { - ret.z = p.z + t * nv.z; - } - - return ret; - }); - return [new Bezier(coords)]; - } - - return this.reduce().map(function (s) { - if (s._linear) { - return s.offset(t)[0]; - } - - return s.scale(t); - }); - } - - simple() { - if (this.order === 3) { - const a1 = utils.angle(this.points[0], this.points[3], this.points[1]); - const a2 = utils.angle(this.points[0], this.points[3], this.points[2]); - if (a1 > 0 && a2 < 0 || a1 < 0 && a2 > 0) return false; - } - - const n1 = this.normal(0); - const n2 = this.normal(1); - let s = n1.x * n2.x + n1.y * n2.y; - - if (this._3d) { - s += n1.z * n2.z; - } - - return abs$1(acos$1(s)) < pi$1 / 3; - } - - reduce() { - // TODO: examine these var types in more detail... - let i, - t1 = 0, - t2 = 0, - step = 0.01, - segment, - pass1 = [], - pass2 = []; // first pass: split on extrema - - let extrema = this.extrema().values; - - if (extrema.indexOf(0) === -1) { - extrema = [0].concat(extrema); - } - - if (extrema.indexOf(1) === -1) { - extrema.push(1); - } - - for (t1 = extrema[0], i = 1; i < extrema.length; i++) { - t2 = extrema[i]; - segment = this.split(t1, t2); - segment._t1 = t1; - segment._t2 = t2; - pass1.push(segment); - t1 = t2; - } // second pass: further reduce these segments to simple segments - - - pass1.forEach(function (p1) { - t1 = 0; - t2 = 0; - - while (t2 <= 1) { - for (t2 = t1 + step; t2 <= 1 + step; t2 += step) { - segment = p1.split(t1, t2); - - if (!segment.simple()) { - t2 -= step; - - if (abs$1(t1 - t2) < step) { - // we can never form a reduction - return []; - } - - segment = p1.split(t1, t2); - segment._t1 = utils.map(t1, 0, 1, p1._t1, p1._t2); - segment._t2 = utils.map(t2, 0, 1, p1._t1, p1._t2); - pass2.push(segment); - t1 = t2; - break; - } - } - } - - if (t1 < 1) { - segment = p1.split(t1, 1); - segment._t1 = utils.map(t1, 0, 1, p1._t1, p1._t2); - segment._t2 = p1._t2; - pass2.push(segment); - } - }); - return pass2; - } - - scale(d) { - const order = this.order; - let distanceFn = false; - - if (typeof d === "function") { - distanceFn = d; - } - - if (distanceFn && order === 2) { - return this.raise().scale(distanceFn); - } // TODO: add special handling for degenerate (=linear) curves. - - - const clockwise = this.clockwise; - const r1 = distanceFn ? distanceFn(0) : d; - const r2 = distanceFn ? distanceFn(1) : d; - const v = [this.offset(0, 10), this.offset(1, 10)]; - const points = this.points; - const np = []; - const o = utils.lli4(v[0], v[0].c, v[1], v[1].c); - - if (!o) { - throw new Error("cannot scale this curve. Try reducing it first."); - } // move all points by distance 'd' wrt the origin 'o' - // move end points by fixed distance along normal. - - - [0, 1].forEach(function (t) { - const p = np[t * order] = utils.copy(points[t * order]); - p.x += (t ? r2 : r1) * v[t].n.x; - p.y += (t ? r2 : r1) * v[t].n.y; - }); - - if (!distanceFn) { - // move control points to lie on the intersection of the offset - // derivative vector, and the origin-through-control vector - [0, 1].forEach(t => { - if (order === 2 && !!t) return; - const p = np[t * order]; - const d = this.derivative(t); - const p2 = { - x: p.x + d.x, - y: p.y + d.y - }; - np[t + 1] = utils.lli4(p, p2, o, points[t + 1]); - }); - return new Bezier(np); - } // move control points by "however much necessary to - // ensure the correct tangent to endpoint". - - - [0, 1].forEach(function (t) { - if (order === 2 && !!t) return; - var p = points[t + 1]; - var ov = { - x: p.x - o.x, - y: p.y - o.y - }; - var rc = distanceFn ? distanceFn((t + 1) / order) : d; - if (distanceFn && !clockwise) rc = -rc; - var m = sqrt$1(ov.x * ov.x + ov.y * ov.y); - ov.x /= m; - ov.y /= m; - np[t + 1] = { - x: p.x + rc * ov.x, - y: p.y + rc * ov.y - }; - }); - return new Bezier(np); - } - - outline(d1, d2, d3, d4) { - d2 = typeof d2 === "undefined" ? d1 : d2; - const reduced = this.reduce(), - len = reduced.length, - fcurves = []; - let bcurves = [], - p, - alen = 0, - tlen = this.length(); - const graduated = typeof d3 !== "undefined" && typeof d4 !== "undefined"; - - function linearDistanceFunction(s, e, tlen, alen, slen) { - return function (v) { - const f1 = alen / tlen, - f2 = (alen + slen) / tlen, - d = e - s; - return utils.map(v, 0, 1, s + f1 * d, s + f2 * d); - }; - } // form curve oulines - - - reduced.forEach(function (segment) { - const slen = segment.length(); - - if (graduated) { - fcurves.push(segment.scale(linearDistanceFunction(d1, d3, tlen, alen, slen))); - bcurves.push(segment.scale(linearDistanceFunction(-d2, -d4, tlen, alen, slen))); - } else { - fcurves.push(segment.scale(d1)); - bcurves.push(segment.scale(-d2)); - } - - alen += slen; - }); // reverse the "return" outline - - bcurves = bcurves.map(function (s) { - p = s.points; - - if (p[3]) { - s.points = [p[3], p[2], p[1], p[0]]; - } else { - s.points = [p[2], p[1], p[0]]; - } - - return s; - }).reverse(); // form the endcaps as lines - - const fs = fcurves[0].points[0], - fe = fcurves[len - 1].points[fcurves[len - 1].points.length - 1], - bs = bcurves[len - 1].points[bcurves[len - 1].points.length - 1], - be = bcurves[0].points[0], - ls = utils.makeline(bs, fs), - le = utils.makeline(fe, be), - segments = [ls].concat(fcurves).concat([le]).concat(bcurves); - return new PolyBezier(segments); - } - - outlineshapes(d1, d2, curveIntersectionThreshold) { - d2 = d2 || d1; - const outline = this.outline(d1, d2).curves; - const shapes = []; - - for (let i = 1, len = outline.length; i < len / 2; i++) { - const shape = utils.makeshape(outline[i], outline[len - i], curveIntersectionThreshold); - shape.startcap.virtual = i > 1; - shape.endcap.virtual = i < len / 2 - 1; - shapes.push(shape); - } - - return shapes; - } - - intersects(curve, curveIntersectionThreshold) { - if (!curve) return this.selfintersects(curveIntersectionThreshold); - - if (curve.p1 && curve.p2) { - return this.lineIntersects(curve); - } - - if (curve instanceof Bezier) { - curve = curve.reduce(); - } - - return this.curveintersects(this.reduce(), curve, curveIntersectionThreshold); - } - - lineIntersects(line) { - const mx = min(line.p1.x, line.p2.x), - my = min(line.p1.y, line.p2.y), - MX = max(line.p1.x, line.p2.x), - MY = max(line.p1.y, line.p2.y); - return utils.roots(this.points, line).filter(t => { - var p = this.get(t); - return utils.between(p.x, mx, MX) && utils.between(p.y, my, MY); - }); - } - - selfintersects(curveIntersectionThreshold) { - // "simple" curves cannot intersect with their direct - // neighbour, so for each segment X we check whether - // it intersects [0:x-2][x+2:last]. - const reduced = this.reduce(), - len = reduced.length - 2, - results = []; - - for (let i = 0, result, left, right; i < len; i++) { - left = reduced.slice(i, i + 1); - right = reduced.slice(i + 2); - result = this.curveintersects(left, right, curveIntersectionThreshold); - results.push(...result); - } - - return results; - } - - curveintersects(c1, c2, curveIntersectionThreshold) { - const pairs = []; // step 1: pair off any overlapping segments - - c1.forEach(function (l) { - c2.forEach(function (r) { - if (l.overlaps(r)) { - pairs.push({ - left: l, - right: r - }); - } - }); - }); // step 2: for each pairing, run through the convergence algorithm. - - let intersections = []; - pairs.forEach(function (pair) { - const result = utils.pairiteration(pair.left, pair.right, curveIntersectionThreshold); - - if (result.length > 0) { - intersections = intersections.concat(result); - } - }); - return intersections; - } - - arcs(errorThreshold) { - errorThreshold = errorThreshold || 0.5; - return this._iterate(errorThreshold, []); - } - - _error(pc, np1, s, e) { - const q = (e - s) / 4, - c1 = this.get(s + q), - c2 = this.get(e - q), - ref = utils.dist(pc, np1), - d1 = utils.dist(pc, c1), - d2 = utils.dist(pc, c2); - return abs$1(d1 - ref) + abs$1(d2 - ref); - } - - _iterate(errorThreshold, circles) { - let t_s = 0, - t_e = 1, - safety; // we do a binary search to find the "good `t` closest to no-longer-good" - - do { - safety = 0; // step 1: start with the maximum possible arc - - t_e = 1; // points: - - let np1 = this.get(t_s), - np2, - np3, - arc, - prev_arc; // booleans: - - let curr_good = false, - prev_good = false, - done; // numbers: - - let t_m = t_e, - prev_e = 1; // step 2: find the best possible arc - - do { - prev_good = curr_good; - prev_arc = arc; - t_m = (t_s + t_e) / 2; - np2 = this.get(t_m); - np3 = this.get(t_e); - arc = utils.getccenter(np1, np2, np3); //also save the t values - - arc.interval = { - start: t_s, - end: t_e - }; - - let error = this._error(arc, np1, t_s, t_e); - - curr_good = error <= errorThreshold; - done = prev_good && !curr_good; - if (!done) prev_e = t_e; // this arc is fine: we can move 'e' up to see if we can find a wider arc - - if (curr_good) { - // if e is already at max, then we're done for this arc. - if (t_e >= 1) { - // make sure we cap at t=1 - arc.interval.end = prev_e = 1; - prev_arc = arc; // if we capped the arc segment to t=1 we also need to make sure that - // the arc's end angle is correct with respect to the bezier end point. - - if (t_e > 1) { - let d = { - x: arc.x + arc.r * cos$1(arc.e), - y: arc.y + arc.r * sin$1(arc.e) - }; - arc.e += utils.angle({ - x: arc.x, - y: arc.y - }, d, this.get(1)); - } - - break; - } // if not, move it up by half the iteration distance - - - t_e = t_e + (t_e - t_s) / 2; - } else { - // this is a bad arc: we need to move 'e' down to find a good arc - t_e = t_m; - } - } while (!done && safety++ < 100); - - if (safety >= 100) { - break; - } // console.log("L835: [F] arc found", t_s, prev_e, prev_arc.x, prev_arc.y, prev_arc.s, prev_arc.e); - - - prev_arc = prev_arc ? prev_arc : arc; - circles.push(prev_arc); - t_s = prev_e; - } while (t_e < 1); - - return circles; - } - -} - -exports.Bezier = Bezier; |