/* Block-relocating memory allocator. Copyright (C) 1992 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* NOTES: Only relocate the blocs neccessary for SIZE in r_alloc_sbrk, rather than all of them. This means allowing for a possible hole between the first bloc and the end of malloc storage. */ #include "config.h" #include "lisp.h" /* Needed for VALBITS. */ #undef NULL #include "mem_limits.h" #include "getpagesize.h" #define NIL ((POINTER) 0) /* Declarations for working with the malloc, ralloc, and system breaks. */ /* System call to set the break value. */ extern POINTER sbrk (); /* The break value, as seen by malloc (). */ static POINTER virtual_break_value; /* The break value, viewed by the relocatable blocs. */ static POINTER break_value; /* The REAL (i.e., page aligned) break value of the process. */ static POINTER page_break_value; /* Macros for rounding. Note that rounding to any value is possible by changing the definition of PAGE. */ #define PAGE (getpagesize ()) #define ALIGNED(addr) (((unsigned int) (addr) & (PAGE - 1)) == 0) #define ROUNDUP(size) (((unsigned int) (size) + PAGE) & ~(PAGE - 1)) #define ROUND_TO_PAGE(addr) (addr & (~(PAGE - 1))) #define EXCEEDS_ELISP_PTR(ptr) ((unsigned int) (ptr) >> VALBITS) /* Managing "almost out of memory" warnings. */ /* Level of warnings issued. */ static int warnlevel; /* Function to call to issue a warning; 0 means don't issue them. */ static void (*warnfunction) (); static void check_memory_limits (address) POINTER address; { SIZE data_size = address - data_space_start; switch (warnlevel) { case 0: if (data_size > (lim_data / 4) * 3) { warnlevel++; (*warnfunction) ("Warning: past 75% of memory limit"); } break; case 1: if (data_size > (lim_data / 20) * 17) { warnlevel++; (*warnfunction) ("Warning: past 85% of memory limit"); } break; case 2: if (data_size > (lim_data / 20) * 19) { warnlevel++; (*warnfunction) ("Warning: past 95% of memory limit"); } break; default: (*warnfunction) ("Warning: past acceptable memory limits"); break; } if (EXCEEDS_ELISP_PTR (address)) memory_full (); } /* Functions to get and return memory from the system. */ /* Obtain SIZE bytes of space. If enough space is not presently available in our process reserve, (i.e., (page_break_value - break_value)), this means getting more page-aligned space from the system. */ static void obtain (size) SIZE size; { SIZE already_available = page_break_value - break_value; if (already_available < size) { SIZE get = ROUNDUP (size - already_available); if (warnfunction) check_memory_limits (page_break_value); if (((int) sbrk (get)) < 0) abort (); page_break_value += get; } break_value += size; } /* Obtain SIZE bytes of space and return a pointer to the new area. */ static POINTER get_more_space (size) SIZE size; { POINTER ptr = break_value; obtain (size); return ptr; } /* Note that SIZE bytes of space have been relinquished by the process. If SIZE is more than a page, return the space to the system. */ static void relinquish (size) SIZE size; { POINTER new_page_break; break_value -= size; new_page_break = (POINTER) ROUNDUP (break_value); if (new_page_break != page_break_value) { if (((int) (sbrk ((char *) new_page_break - (char *) page_break_value))) < 0) abort (); page_break_value = new_page_break; } /* Zero the space from the end of the "official" break to the actual break, so that bugs show up faster. */ bzero (break_value, ((char *) page_break_value - (char *) break_value)); } /* The meat - allocating, freeing, and relocating blocs. */ /* These structures are allocated in the malloc arena. The linked list is kept in order of increasing '.data' members. The data blocks abut each other; if b->next is non-nil, then b->data + b->size == b->next->data. */ typedef struct bp { struct bp *next; struct bp *prev; POINTER *variable; POINTER data; SIZE size; } *bloc_ptr; #define NIL_BLOC ((bloc_ptr) 0) #define BLOC_PTR_SIZE (sizeof (struct bp)) /* Head and tail of the list of relocatable blocs. */ static bloc_ptr first_bloc, last_bloc; /* Declared in dispnew.c, this version doesn't screw up if regions overlap. */ extern void safe_bcopy (); /* Find the bloc referenced by the address in PTR. Returns a pointer to that block. */ static bloc_ptr find_bloc (ptr) POINTER *ptr; { register bloc_ptr p = first_bloc; while (p != NIL_BLOC) { if (p->variable == ptr && p->data == *ptr) return p; p = p->next; } return p; } /* Allocate a bloc of SIZE bytes and append it to the chain of blocs. Returns a pointer to the new bloc. */ static bloc_ptr get_bloc (size) SIZE size; { register bloc_ptr new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE); new_bloc->data = get_more_space (size); new_bloc->size = size; new_bloc->next = NIL_BLOC; new_bloc->variable = NIL; if (first_bloc) { new_bloc->prev = last_bloc; last_bloc->next = new_bloc; last_bloc = new_bloc; } else { first_bloc = last_bloc = new_bloc; new_bloc->prev = NIL_BLOC; } return new_bloc; } /* Relocate all blocs from BLOC on upward in the list to the zone indicated by ADDRESS. Direction of relocation is determined by the position of ADDRESS relative to BLOC->data. Note that ordering of blocs is not affected by this function. */ static void relocate_some_blocs (bloc, address) bloc_ptr bloc; POINTER address; { register bloc_ptr b; POINTER data_zone = bloc->data; register SIZE data_zone_size = 0; register SIZE offset = bloc->data - address; POINTER new_data_zone = data_zone - offset; for (b = bloc; b != NIL_BLOC; b = b->next) { data_zone_size += b->size; b->data -= offset; *b->variable = b->data; } safe_bcopy (data_zone, new_data_zone, data_zone_size); } /* Free BLOC from the chain of blocs, relocating any blocs above it and returning BLOC->size bytes to the free area. */ static void free_bloc (bloc) bloc_ptr bloc; { if (bloc == first_bloc && bloc == last_bloc) { first_bloc = last_bloc = NIL_BLOC; } else if (bloc == last_bloc) { last_bloc = bloc->prev; last_bloc->next = NIL_BLOC; } else if (bloc == first_bloc) { first_bloc = bloc->next; first_bloc->prev = NIL_BLOC; relocate_some_blocs (bloc->next, bloc->data); } else { bloc->next->prev = bloc->prev; bloc->prev->next = bloc->next; relocate_some_blocs (bloc->next, bloc->data); } relinquish (bloc->size); free (bloc); } /* Interface routines. */ static int use_relocatable_buffers; /* Obtain SIZE bytes of storage from the free pool, or the system, as neccessary. If relocatable blocs are in use, this means relocating them. */ POINTER r_alloc_sbrk (size) long size; { POINTER ptr; if (! use_relocatable_buffers) return sbrk (size); if (size > 0) { obtain (size); if (first_bloc) { relocate_some_blocs (first_bloc, first_bloc->data + size); /* Zero out the space we just allocated, to help catch bugs quickly. */ bzero (virtual_break_value, size); } } else if (size < 0) { if (first_bloc) relocate_some_blocs (first_bloc, first_bloc->data + size); relinquish (- size); } ptr = virtual_break_value; virtual_break_value += size; return ptr; } /* Allocate a relocatable bloc of storage of size SIZE. A pointer to the data is returned in *PTR. PTR is thus the address of some variable which will use the data area. */ POINTER r_alloc (ptr, size) POINTER *ptr; SIZE size; { register bloc_ptr new_bloc; new_bloc = get_bloc (size); new_bloc->variable = ptr; *ptr = new_bloc->data; return *ptr; } /* Free a bloc of relocatable storage whose data is pointed to by PTR. */ void r_alloc_free (ptr) register POINTER *ptr; { register bloc_ptr dead_bloc; dead_bloc = find_bloc (ptr); if (dead_bloc == NIL_BLOC) abort (); free_bloc (dead_bloc); } /* Given a pointer at address PTR to relocatable data, resize it to SIZE. This is done by obtaining a new block and freeing the old, unless SIZE is less than or equal to the current bloc size, in which case nothing happens and the current value is returned. The contents of PTR is changed to reflect the new bloc, and this value is returned. */ POINTER r_re_alloc (ptr, size) POINTER *ptr; SIZE size; { register bloc_ptr old_bloc, new_bloc; old_bloc = find_bloc (ptr); if (old_bloc == NIL_BLOC) abort (); if (size <= old_bloc->size) /* Wouldn't it be useful to actually resize the bloc here? */ return *ptr; new_bloc = get_bloc (size); new_bloc->variable = ptr; safe_bcopy (old_bloc->data, new_bloc->data, old_bloc->size); *ptr = new_bloc->data; free_bloc (old_bloc); return *ptr; } /* The hook `malloc' uses for the function which gets more space from the system. */ extern POINTER (*__morecore) (); /* A flag to indicate whether we have initialized ralloc yet. For Emacs's sake, please do not make this local to malloc_init; on some machines, the dumping procedure makes all static variables read-only. On these machines, the word static is #defined to be the empty string, meaning that malloc_initialized becomes an automatic variable, and loses its value each time Emacs is started up. */ static int malloc_initialized = 0; /* Intialize various things for memory allocation. */ void malloc_init (start, warn_func) POINTER start; void (*warn_func) (); { if (start) data_space_start = start; if (malloc_initialized) return; malloc_initialized = 1; __morecore = r_alloc_sbrk; virtual_break_value = break_value = sbrk (0); page_break_value = (POINTER) ROUNDUP (break_value); bzero (break_value, (page_break_value - break_value)); use_relocatable_buffers = 1; lim_data = 0; warnlevel = 0; warnfunction = warn_func; get_lim_data (); }