@c -*-texinfo-*- @c This is part of the GNU Emacs Lisp Reference Manual. @c Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc. @c See the file elisp.texi for copying conditions. @setfilename ../info/compile @node Byte Compilation, Debugging, Loading, Top @chapter Byte Compilation @cindex byte-code @cindex compilation GNU Emacs Lisp has a @dfn{compiler} that translates functions written in Lisp into a special representation called @dfn{byte-code} that can be executed more efficiently. The compiler replaces Lisp function definitions with byte-code. When a byte-code function is called, its definition is evaluated by the @dfn{byte-code interpreter}. Because the byte-compiled code is evaluated by the byte-code interpreter, instead of being executed directly by the machine's hardware (as true compiled code is), byte-code is completely transportable from machine to machine without recompilation. It is not, however, as fast as true compiled code. In general, any version of Emacs can run byte-compiled code produced by recent earlier versions of Emacs, but the reverse is not true. In particular, if you compile a program with Emacs 18, you can run the compiled code in Emacs 19, but not vice versa. @xref{Compilation Errors}, for how to investigate errors occurring in byte compilation. @menu * Compilation Functions:: Byte compilation functions. * Eval During Compile:: Code to be evaluated when you compile. * Byte-Code Objects:: The data type used for byte-compiled functions. * Disassembly:: Disassembling byte-code; how to read byte-code. @end menu @node Compilation Functions @comment node-name, next, previous, up @section The Compilation Functions @cindex compilation functions You can byte-compile an individual function or macro definition with the @code{byte-compile} function. You can compile a whole file with @code{byte-compile-file}, or several files with @code{byte-recompile-directory} or @code{batch-byte-compile}. When you run the byte compiler, you may get warnings in a buffer called @samp{*Compile-Log*}. These report usage in your program that suggest a problem, but are not necessarily erroneous. @cindex macro compilation Be careful when byte-compiling code that uses macros. Macro calls are expanded when they are compiled, so the macros must already be defined for proper compilation. For more details, see @ref{Compiling Macros}. While byte-compiling a file, any @code{require} calls at top-level are executed. One way to ensure that necessary macro definitions are available during compilation is to require the file that defines them. @xref{Features}. A byte-compiled function is not as efficient as a primitive function written in C, but runs much faster than the version written in Lisp. For a rough comparison, consider the example below: @example @group (defun silly-loop (n) "Return time before and after N iterations of a loop." (let ((t1 (current-time-string))) (while (> (setq n (1- n)) 0)) (list t1 (current-time-string)))) @result{} silly-loop @end group @group (silly-loop 100000) @result{} ("Thu Jan 12 20:18:38 1989" "Thu Jan 12 20:19:29 1989") ; @r{51 seconds} @end group @group (byte-compile 'silly-loop) @result{} @r{[Compiled code not shown]} @end group @group (silly-loop 100000) @result{} ("Thu Jan 12 20:21:04 1989" "Thu Jan 12 20:21:17 1989") ; @r{13 seconds} @end group @end example In this example, the interpreted code required 51 seconds to run, whereas the byte-compiled code required 13 seconds. These results are representative, but actual results will vary greatly. @defun byte-compile symbol This function byte-compiles the function definition of @var{symbol}, replacing the previous definition with the compiled one. The function definition of @var{symbol} must be the actual code for the function; i.e., the compiler does not follow indirection to another symbol. @code{byte-compile} does not compile macros. @code{byte-compile} returns the new, compiled definition of @var{symbol}. @example @group (defun factorial (integer) "Compute factorial of INTEGER." (if (= 1 integer) 1 (* integer (factorial (1- integer))))) @result{} factorial @end group @group (byte-compile 'factorial) @result{} #[(integer) "^H\301U\203^H^@@\301\207\302^H\303^HS!\"\207" [integer 1 * factorial] 4 "Compute factorial of INTEGER."] @end group @end example @noindent The result is a compiled function object. The string it contains is the actual byte-code; each character in it is an instruction. The vector contains all the constants, variable names and function names used by the function, except for certain primitives that are coded as special instructions. @end defun @deffn Command compile-defun This command reads the defun containing point, compiles it, and evaluates the result. If you use this on a defun that is actually a function definition, the effect is to install a compiled version of that function. @end deffn @deffn Command byte-compile-file filename This function compiles a file of Lisp code named @var{filename} into a file of byte-code. The output file's name is made by appending @samp{c} to the end of @var{filename}. Compilation works by reading the input file one form at a time. If it is a definition of a function or macro, the compiled function or macro definition is written out. Other forms are batched together, then each batch is compiled, and written so that its compiled code will be executed when the file is read. All comments are discarded when the input file is read. This command returns @code{t}. When called interactively, it prompts for the file name. @example @group % ls -l push* -rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el @end group @group (byte-compile-file "~/emacs/push.el") @result{} t @end group @group % ls -l push* -rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el -rw-rw-rw- 1 lewis 638 Oct 8 20:25 push.elc @end group @end example @end deffn @deffn Command byte-recompile-directory directory flag @cindex library compilation This function recompiles every @samp{.el} file in @var{directory} that needs recompilation. A file needs recompilation if a @samp{.elc} file exists but is older than the @samp{.el} file. If a @samp{.el} file exists, but there is no corresponding @samp{.elc} file, then @var{flag} is examined. If it is @code{nil}, the file is ignored. If it is non-@code{nil}, the user is asked whether the file should be compiled. The returned value of this command is unpredictable. @end deffn @defun batch-byte-compile This function runs @code{byte-compile-file} on the files remaining on the command line. This function must be used only in a batch execution of Emacs, as it kills Emacs on completion. An error in one file does not prevent processing of subsequent files. (The file which gets the error will not, of course, produce any compiled code.) @example % emacs -batch -f batch-byte-compile *.el @end example @end defun @defun byte-code code-string data-vector max-stack @cindex byte-code interpreter This function actually interprets byte-code. A byte-compiled function is actually defined with a body that calls @code{byte-code}. Don't call this function yourself. Only the byte compiler knows how to generate valid calls to this function. In newer Emacs versions (19 and up), byte-code is usually executed as part of a compiled function object, and only rarely as part of a call to @code{byte-code}. @end defun @node Eval During Compile @section Evaluation During Compilation These features permit you to write code to be evaluated during compilation of a program. @defspec eval-and-compile body This form marks @var{body} to be evaluated both when you compile the containing code and when you run it (whether compiled or not). You can get a similar result by putting @var{body} in a separate file and referring to that file with @code{require}. Using @code{require} is preferable if there is a substantial amount of code to be executed in this way. @end defspec @defspec eval-when-compile body This form marks @var{body} to be evaluated at compile time @emph{only}. The result of evaluation by the compiler becomes a constant which appears in the compiled program. When the program is interpreted, not compiled at all, @var{body} is evaluated normally. At top-level, this is analogous to the Common Lisp idiom @code{(eval-when (compile eval) @dots{})}. Elsewhere, the Common Lisp @samp{#.} reader macro (but not when interpreting) is closer to what @code{eval-when-compile} does. @end defspec @node Byte-Code Objects @section Byte-Code Objects @cindex compiled function @cindex byte-code function Byte-compiled functions have a special data type: they are @dfn{byte-code function objects}. Internally, a byte-code function object is much like a vector; however, the evaluator handles this data type specially when it appears as a function to be called. The printed representation for a byte-code function object is like that for a vector, with an additional @samp{#} before the opening @samp{[}. In Emacs version 18, there was no byte-code function object data type; compiled functions used the function @code{byte-code} to run the byte code. A byte-code function object must have at least four elements; there is no maximum number, but only the first six elements are actually used. They are: @table @var @item arglist The list of argument symbols. @item byte-code The string containing the byte-code instructions. @item constants The vector of constants referenced by the byte code. @item stacksize The maximum stack size this function needs. @item docstring The documentation string (if any); otherwise, @code{nil}. For functions preloaded before Emacs is dumped, this is usually an integer which is an index into the @file{DOC} file; use @code{documentation} to convert this into a string (@pxref{Accessing Documentation}). @item interactive The interactive spec (if any). This can be a string or a Lisp expression. It is @code{nil} for a function that isn't interactive. @end table Here's an example of a byte-code function object, in printed representation. It is the definition of the command @code{backward-sexp}. @example #[(&optional arg) "^H\204^F^@@\301^P\302^H[!\207" [arg 1 forward-sexp] 2 254435 "p"] @end example The primitive way to create a byte-code object is with @code{make-byte-code}: @defun make-byte-code &rest elements This function constructs and returns a byte-code function object with @var{elements} as its elements. @end defun You should not try to come up with the elements for a byte-code function yourself, because if they are inconsistent, Emacs may crash when you call the function. Always leave it to the byte-compiler to create these objects; it, we hope, always makes the elements consistent. You can access the elements of a byte-code object using @code{aref}; you can also use @code{vconcat} to create a vector with the same elements. @node Disassembly @section Disassembled Byte-Code @cindex disassembled byte-code People do not write byte-code; that job is left to the byte compiler. But we provide a disassembler to satisfy a cat-like curiosity. The disassembler converts the byte-compiled code into humanly readable form. The byte-code interpreter is implemented as a simple stack machine. Values get stored by being pushed onto the stack, and are popped off and manipulated, the results being pushed back onto the stack. When a function returns, the top of the stack is popped and returned as the value of the function. In addition to the stack, values used during byte-code execution can be stored in ordinary Lisp variables. Variable values can be pushed onto the stack, and variables can be set by popping the stack. @deffn Command disassemble object &optional stream This function prints the disassembled code for @var{object}. If @var{stream} is supplied, then output goes there. Otherwise, the disassembled code is printed to the stream @code{standard-output}. The argument @var{object} can be a function name or a lambda expression. As a special exception, if this function is used interactively, it outputs to a buffer named @samp{*Disassemble*}. @end deffn Here are two examples of using the @code{disassemble} function. We have added explanatory comments to help you relate the byte-code to the Lisp source; these do not appear in the output of @code{disassemble}. These examples show unoptimized byte-code. Nowadays byte-code is usually optimized, but we did not want to rewrite these examples, since they still serve their purpose. @example @group (defun factorial (integer) "Compute factorial of an integer." (if (= 1 integer) 1 (* integer (factorial (1- integer))))) @result{} factorial @end group @group (factorial 4) @result{} 24 @end group @group (disassemble 'factorial) @print{} byte-code for factorial: doc: Compute factorial of an integer. args: (integer) @end group @group 0 constant 1 ; @r{Push 1 onto stack.} 1 varref integer ; @r{Get value of @code{integer}} ; @r{from the environment} ; @r{and push the value} ; @r{onto the stack.} @end group @group 2 eqlsign ; @r{Pop top two values off stack,} ; @r{compare them,} ; @r{and push result onto stack.} @end group @group 3 goto-if-nil 10 ; @r{Pop and test top of stack;} ; @r{if @code{nil}, go to 10,} ; @r{else continue.} @end group @group 6 constant 1 ; @r{Push 1 onto top of stack.} 7 goto 17 ; @r{Go to 17 (in this case, 1 will be} ; @r{returned by the function).} @end group @group 10 constant * ; @r{Push symbol @code{*} onto stack.} 11 varref integer ; @r{Push value of @code{integer} onto stack.} @end group @group 12 constant factorial ; @r{Push @code{factorial} onto stack.} 13 varref integer ; @r{Push value of @code{integer} onto stack.} 14 sub1 ; @r{Pop @code{integer}, decrement value,} ; @r{push new value onto stack.} @end group @group ; @r{Stack now contains:} ; @minus{} @r{decremented value of @code{integer}} ; @minus{} @r{@code{factorial}} ; @minus{} @r{value of @code{integer}} ; @minus{} @r{@code{*}} @end group @group 15 call 1 ; @r{Call function @code{factorial} using} ; @r{the first (i.e., the top) element} ; @r{of the stack as the argument;} ; @r{push returned value onto stack.} @end group @group ; @r{Stack now contains:} ; @minus{} @r{result of result of recursive} ; @r{call to @code{factorial}} ; @minus{} @r{value of @code{integer}} ; @minus{} @r{@code{*}} @end group @group 16 call 2 ; @r{Using the first two} ; @r{(i.e., the top two)} ; @r{elements of the stack} ; @r{as arguments,} ; @r{call the function @code{*},} ; @r{pushing the result onto the stack.} @end group @group 17 return ; @r{Return the top element} ; @r{of the stack.} @result{} nil @end group @end example The @code{silly-loop} function is somewhat more complex: @example @group (defun silly-loop (n) "Return time before and after N iterations of a loop." (let ((t1 (current-time-string))) (while (> (setq n (1- n)) 0)) (list t1 (current-time-string)))) @result{} silly-loop @end group @group (disassemble 'silly-loop) @print{} byte-code for silly-loop: doc: Return time before and after N iterations of a loop. args: (n) 0 constant current-time-string ; @r{Push} ; @r{@code{current-time-string}} ; @r{onto top of stack.} @end group @group 1 call 0 ; @r{Call @code{current-time-string}} ; @r{ with no argument,} ; @r{ pushing result onto stack.} @end group @group 2 varbind t1 ; @r{Pop stack and bind @code{t1}} ; @r{to popped value.} @end group @group 3 varref n ; @r{Get value of @code{n} from} ; @r{the environment and push} ; @r{the value onto the stack.} @end group @group 4 sub1 ; @r{Subtract 1 from top of stack.} @end group @group 5 dup ; @r{Duplicate the top of the stack;} ; @r{i.e. copy the top of} ; @r{the stack and push the} ; @r{copy onto the stack.} @end group @group 6 varset n ; @r{Pop the top of the stack,} ; @r{and bind @code{n} to the value.} ; @r{In effect, the sequence @code{dup varset}} ; @r{copies the top of the stack} ; @r{into the value of @code{n}} ; @r{without popping it.} @end group @group 7 constant 0 ; @r{Push 0 onto stack.} @end group @group 8 gtr ; @r{Pop top two values off stack,} ; @r{test if @var{n} is greater than 0} ; @r{and push result onto stack.} @end group @group 9 goto-if-nil-else-pop 17 ; @r{Goto 17 if @code{n} > 0} ; @r{else pop top of stack} ; @r{and continue} ; @r{(this exits the while loop).} @end group @group 12 constant nil ; @r{Push @code{nil} onto stack} ; @r{(this is the body of the loop).} @end group @group 13 discard ; @r{Discard result of the body} ; @r{of the loop (a while loop} ; @r{is always evaluated for} ; @r{its side effects).} @end group @group 14 goto 3 ; @r{Jump back to beginning} ; @r{of while loop.} @end group @group 17 discard ; @r{Discard result of while loop} ; @r{by popping top of stack.} @end group @group 18 varref t1 ; @r{Push value of @code{t1} onto stack.} @end group @group 19 constant current-time-string ; @r{Push} ; @r{@code{current-time-string}} ; @r{onto top of stack.} @end group @group 20 call 0 ; @r{Call @code{current-time-string} again.} @end group @group 21 list2 ; @r{Pop top two elements off stack,} ; @r{create a list of them,} ; @r{and push list onto stack.} @end group @group 22 unbind 1 ; @r{Unbind @code{t1} in local environment.} 23 return ; @r{Return value of the top of stack.} @result{} nil @end group @end example